milvus-logo
LFAI
Home
  • Guia do utilizador

Utilizar a chave de partição

Este guia orienta-o na utilização da chave de partição para acelerar a recuperação de dados da sua coleção.

Visão geral

É possível definir um determinado campo numa coleção como chave de partição para que o Milvus distribua as entidades recebidas em diferentes partições de acordo com os respectivos valores de partição neste campo. Isto permite que entidades com o mesmo valor chave sejam agrupadas numa partição, acelerando o desempenho da pesquisa ao evitar a necessidade de pesquisar partições irrelevantes ao filtrar pelo campo chave. Quando comparada com os métodos de filtragem tradicionais, a chave de partição pode melhorar significativamente o desempenho da consulta.

Pode utilizar a chave de partição para implementar o multi-tenancy. Para obter detalhes sobre multilocação, leia Multilocação para saber mais.

Ativar a chave de partição

Para definir um campo como chave de partição, especifique partition_key_field ao criar um esquema de coleção.

No código de exemplo abaixo, num_partitions determina o número de partições que serão criadas. Por predefinição, está definido para 64. Recomendamos que mantenha o valor predefinido.

Para obter mais informações sobre os parâmetros, consulte MilvusClient, create_schema(), e add_field() na referência do SDK.

Para obter mais informações sobre os parâmetros, consulte MilvusClientV2, createSchema(), e addField() na referência do SDK.

Para mais informações sobre os parâmetros, consulte MilvusClient e createCollection() na referência do SDK.

import random, time
from pymilvus import connections, MilvusClient, DataType

SERVER_ADDR = "http://localhost:19530"

# 1. Set up a Milvus client
client = MilvusClient(
    uri=SERVER_ADDR
)

# 2. Create a collection
schema = MilvusClient.create_schema(
    auto_id=False,
    enable_dynamic_field=True,
    partition_key_field="color",
    num_partitions=64 # Number of partitions. Defaults to 64.
)

schema.add_field(field_name="id", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=5)
schema.add_field(field_name="color", datatype=DataType.VARCHAR, max_length=512)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.common.DataType;
import io.milvus.v2.common.IndexParam;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;

String CLUSTER_ENDPOINT = "http://localhost:19530";

// 1. Connect to Milvus server
ConnectConfig connectConfig = ConnectConfig.builder()
    .uri(CLUSTER_ENDPOINT)
    .build();

MilvusClientV2 client = new MilvusClientV2(connectConfig);

// 2. Create a collection in customized setup mode

// 2.1 Create schema
CreateCollectionReq.CollectionSchema schema = client.createSchema();

// 2.2 Add fields to schema
schema.addField(AddFieldReq.builder()
    .fieldName("id")
    .dataType(DataType.Int64)
    .isPrimaryKey(true)
    .autoID(false)
    .build());

schema.addField(AddFieldReq.builder()
    .fieldName("vector")
    .dataType(DataType.FloatVector)
    .dimension(5)
    .build());
    
schema.addField(AddFieldReq.builder()
    .fieldName("color")
    .dataType(DataType.VarChar)
    .maxLength(512)
    .isPartitionKey(true)
    .build());
const { MilvusClient, DataType, sleep } = require("@zilliz/milvus2-sdk-node")

const address = "http://localhost:19530"

async function main() {
// 1. Set up a Milvus Client
client = new MilvusClient({address}); 

// 2. Create a collection
// 2.1 Define fields
const fields = [
    {
        name: "id",
        data_type: DataType.Int64,
        is_primary_key: true,
        auto_id: false
    },
    {
        name: "vector",
        data_type: DataType.FloatVector,
        dim: 5
    },
    {
        name: "color",
        data_type: DataType.VarChar,
        max_length: 512,
        is_partition_key: true
    }
]

Depois de ter definido os campos, configure os parâmetros de índice.

index_params = MilvusClient.prepare_index_params()

index_params.add_index(
    field_name="id",
    index_type="STL_SORT"
)

index_params.add_index(
    field_name="color",
    index_type="Trie"
)

index_params.add_index(
    field_name="vector",
    index_type="IVF_FLAT",
    metric_type="L2",
    params={"nlist": 1024}
)
// 2.3 Prepare index parameters
IndexParam indexParamForVectorField = IndexParam.builder()
    .fieldName("vector")
    .indexType(IndexParam.IndexType.IVF_FLAT)
    .metricType(IndexParam.MetricType.IP)
    .extraParams(Map.of("nlist", 1024))
    .build();

List<IndexParam> indexParams = new ArrayList<>();
indexParams.add(indexParamForVectorField);
// 2.2 Prepare index parameters
const index_params = [{
    field_name: "color",
    index_type: "Trie"
},{
    field_name: "id",
    index_type: "STL_SORT"
},{
    field_name: "vector",
    index_type: "IVF_FLAT",
    metric_type: "IP",
    params: { nlist: 1024}
}]

Por fim, pode criar uma coleção.

client.create_collection(
    collection_name="test_collection",
    schema=schema,
    index_params=index_params
)
// 2.4 Create a collection with schema and index parameters
CreateCollectionReq customizedSetupReq = CreateCollectionReq.builder()
    .collectionName("test_collection")
    .collectionSchema(schema)
    .indexParams(indexParams)          
    .build();

client.createCollection(customizedSetupReq);
// 2.3 Create a collection with fields and index parameters
res = await client.createCollection({
    collection_name: "test_collection",
    fields: fields, 
    index_params: index_params,
})

console.log(res.error_code)

// Output
// 
// Success
//

Listar partições

Quando um campo de uma coleção é utilizado como chave de partição, o Milvus cria o número especificado de partições e gere-as em seu nome. Por conseguinte, já não pode manipular as partições desta coleção.

O seguinte excerto demonstra a existência de 64 partições numa coleção quando um dos seus campos é utilizado como chave de partição.

Inserir dados

Quando a coleção estiver pronta, comece a inserir os dados da seguinte forma:

Preparar dados

# 3. Insert randomly generated vectors 
colors = ["green", "blue", "yellow", "red", "black", "white", "purple", "pink", "orange", "brown", "grey"]
data = []

for i in range(1000):
    current_color = random.choice(colors)
    current_tag = random.randint(1000, 9999)
    data.append({
        "id": i,
        "vector": [ random.uniform(-1, 1) for _ in range(5) ],
        "color": current_color,
        "tag": current_tag,
        "color_tag": f"{current_color}_{str(current_tag)}"
    })

print(data[0])
// 3. Insert randomly generated vectors
List<String> colors = Arrays.asList("green", "blue", "yellow", "red", "black", "white", "purple", "pink", "orange", "brown", "grey");
List<JSONObject> data = new ArrayList<>();

for (int i=0; i<1000; i++) {
    Random rand = new Random();
    String current_color = colors.get(rand.nextInt(colors.size()-1));
    int current_tag = rand.nextInt(8999) + 1000;
    JSONObject row = new JSONObject();
    row.put("id", Long.valueOf(i));
    row.put("vector", Arrays.asList(rand.nextFloat(), rand.nextFloat(), rand.nextFloat(), rand.nextFloat(), rand.nextFloat()));
    row.put("color", current_color);
    row.put("tag", current_tag);
    row.put("color_tag", current_color + "_" + String.valueOf(rand.nextInt(8999) + 1000));
    data.add(row);
}

System.out.println(JSONObject.toJSON(data.get(0)));   
// 3. Insert randomly generated vectors 
const colors = ["green", "blue", "yellow", "red", "black", "white", "purple", "pink", "orange", "brown", "grey"]
var data = []

for (let i = 0; i < 1000; i++) {
    const current_color = colors[Math.floor(Math.random() * colors.length)]
    const current_tag = Math.floor(Math.random() * 8999 + 1000)
    data.push({
        id: i,
        vector: [Math.random(), Math.random(), Math.random(), Math.random(), Math.random()],
        color: current_color,
        tag: current_tag,
        color_tag: `${current_color}_${current_tag}`
    })
}

console.log(data[0])

Pode ver a estrutura dos dados gerados verificando a sua primeira entrada.

{
    id: 0,
    vector: [
        0.1275656405044483,
        0.47417858592773277,
        0.13858264437643286,
        0.2390904907020377,
        0.8447862593689635
    ],
    color: 'blue',
    tag: 2064,
    color_tag: 'blue_2064'
}

Inserir dados

Utilize o método insert() para inserir os dados na coleção.

Utilize o método insert() para inserir os dados na coleção.

Utilizar o método insert() para inserir os dados na coleção.

res = client.insert(
    collection_name="test_collection",
    data=data
)

print(res)

# Output
#
# {
#     "insert_count": 1000,
#     "ids": [
#         0,
#         1,
#         2,
#         3,
#         4,
#         5,
#         6,
#         7,
#         8,
#         9,
#         "(990 more items hidden)"
#     ]
# }
// 3.1 Insert data into the collection
InsertReq insertReq = InsertReq.builder()
    .collectionName("test_collection")
    .data(data)
    .build();

InsertResp insertResp = client.insert(insertReq);

System.out.println(JSONObject.toJSON(insertResp));

// Output:
// {"insertCnt": 1000}
res = await client.insert({
    collection_name: "test_collection",
    data: data,
})

console.log(res.insert_cnt)

// Output
// 
// 1000
// 

Utilizar a chave de partição

Depois de ter indexado e carregado a coleção, bem como os dados inseridos, pode realizar uma pesquisa de semelhança utilizando a chave de partição.

Para mais informações sobre parâmetros, consulte search() na referência do SDK.

Para obter mais informações sobre os parâmetros, consulte search() na referência do SDK.

Para obter mais informações sobre os parâmetros, consultar search() na referência do SDK.

notas

Para efetuar uma pesquisa de similaridade utilizando a chave de partição, deve incluir um dos seguintes itens na expressão booleana do pedido de pesquisa:

  • expr='<partition_key>=="xxxx"'

  • expr='<partition_key> in ["xxx", "xxx"]'

Substituir <partition_key> pelo nome do campo que é designado como a chave de partição.

# 4. Search with partition key
query_vectors = [[0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592]]

res = client.search(
    collection_name="test_collection",
    data=query_vectors,
    filter="color == 'green'",
    search_params={"metric_type": "L2", "params": {"nprobe": 10}},
    output_fields=["id", "color_tag"],
    limit=3
)

print(res)

# Output
#
# [
#     [
#         {
#             "id": 970,
#             "distance": 0.5770174264907837,
#             "entity": {
#                 "id": 970,
#                 "color_tag": "green_9828"
#             }
#         },
#         {
#             "id": 115,
#             "distance": 0.6898155808448792,
#             "entity": {
#                 "id": 115,
#                 "color_tag": "green_4073"
#             }
#         },
#         {
#             "id": 899,
#             "distance": 0.7028976678848267,
#             "entity": {
#                 "id": 899,
#                 "color_tag": "green_9897"
#             }
#         }
#     ]
# ]
// 4. Search with partition key
List<List<Float>> query_vectors = Arrays.asList(Arrays.asList(0.3580376395471989f, -0.6023495712049978f, 0.18414012509913835f, -0.26286205330961354f, 0.9029438446296592f));

SearchReq searchReq = SearchReq.builder()
    .collectionName("test_collection")
    .data(query_vectors)
    .filter("color == \"green\"")
    .topK(3)
    .build();

SearchResp searchResp = client.search(searchReq);

System.out.println(JSONObject.toJSON(searchResp));   

// Output:
// {"searchResults": [[
//     {
//         "distance": 1.0586997,
//         "id": 414,
//         "entity": {}
//     },
//     {
//         "distance": 0.981384,
//         "id": 293,
//         "entity": {}
//     },
//     {
//         "distance": 0.9548756,
//         "id": 325,
//         "entity": {}
//     }
// ]]}
// 4. Search with partition key
const query_vectors = [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592]

res = await client.search({
    collection_name: "test_collection",
    data: query_vectors,
    filter: "color == 'green'",
    output_fields: ["color_tag"],
    limit: 3
})

console.log(res.results)

// Output
// 
// [
//   { score: 2.402090549468994, id: '135', color_tag: 'green_2694' },
//   { score: 2.3938629627227783, id: '326', color_tag: 'green_7104' },
//   { score: 2.3235254287719727, id: '801', color_tag: 'green_3162' }
// ]
// 

Casos de uso típicos

Pode utilizar a funcionalidade de chave de partição para obter um melhor desempenho de pesquisa e permitir o multilocatário. Isso pode ser feito atribuindo um valor específico do locatário como o campo de chave de partição para cada entidade. Ao pesquisar ou consultar a coleção, é possível filtrar as entidades pelo valor específico do locatário, incluindo o campo da chave de partição na expressão booleana. Essa abordagem garante o isolamento de dados por locatários e evita a varredura de partições desnecessárias.

Traduzido porDeepLogo

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

Esta página foi útil?