milvus-logo
LFAI
フロントページへ
  • ユーザーガイド

配列フィールドの使用

このガイドでは、配列値の挿入、ベクトルおよび配列フィールドへのインデックスの作成、基本および高度な演算子を使用した配列フィールドの検索およびクエリなど、配列フィールドの使用方法について説明します。

前提条件

以下の環境が整っていることを確認してください:

  • Milvusがインストールされ、稼動していること。Milvusのインストール方法については、Milvusのインストールを参照してください。
  • お客様の環境にMilvus SDKのいずれかがインストールされていること。詳細は「SDKのインストール」をご参照ください。

配列フィールドでデータを準備する

Milvusはフィールドデータ型の一つとして配列をサポートしています。Milvusコレクション内の配列は常に同じデータ型の要素を持つ必要があり、配列要素のデータ型はMilvusでサポートされているデータ型のいずれでもかまいません。サポートされるデータ型のリストについては、サポートされるデータ型を参照してください。

次のコード・スニペットはcolor_coord という名前の配列フィールドを含むランダムなデータセットを生成します。

import random

colors = ["green", "blue", "yellow", "red", "black", "white", "purple", "pink", "orange", "brown", "grey"]
data = []

for i in range(1000):
    current_color = random.choice(colors)
    current_tag = random.randint(1000, 9999)
    current_coord = [ random.randint(0, 40) for _ in range(random.randint(3, 5)) ]
    data.append({
        "id": i,
        "vector": [ random.uniform(-1, 1) for _ in range(5) ],
        "color": current_color,
        "color_tag": current_tag,
        "color_coord": current_coord,
    })

print(data[0])
List<String> colors = Arrays.asList("green", "blue", "yellow", "red", "black", "white", "purple", "pink", "orange", "brown", "grey");
List<JSONObject> data = new ArrayList<>();

for (int i=0; i<1000; i++) {
    Random rand = new Random();
    String current_color = colors.get(rand.nextInt(colors.size()-1));
    Long current_tag = rand.nextLong(8999L) + 1000L;

    // Generate an random-sized array
    Long capacity = rand.nextLong(5L) + 1L;
    List<Long> current_coord = new ArrayList<>();
    current_coord.add(rand.nextLong(40L) + 1L);
    current_coord.add(rand.nextLong(40L) + 1L);
    for (int j=3; j<capacity; j++) {
        current_coord.add(rand.nextLong(40L) + 1L);
    }

    JSONObject row = new JSONObject();
    row.put("id", Long.valueOf(i));
    row.put("vector", Arrays.asList(rand.nextFloat(), rand.nextFloat(), rand.nextFloat(), rand.nextFloat(), rand.nextFloat()));
    row.put("color", current_color);
    row.put("color_tag", current_tag);
    row.put("color_coord", current_coord);
    data.add(row);
}

System.out.println(JSONObject.toJSON(data.get(0)));   
const colors = ["green", "blue", "yellow", "red", "black", "white", "purple", "pink", "orange", "brown", "grey"];
let data = [];

for (let i = 0; i < 1000; i++) {
    const current_color = colors[Math.floor(Math.random() * colors.length)];
    const current_tag = Math.floor(Math.random() * 8999 + 1000);
    const current_coord = Array(Math.floor(Math.random() * 5 + 1)).fill(0).map(() => Math.floor(Math.random() * 40));

    data.push({
        id: i,
        vector: Array(5).fill(0).map(() => Math.random()),
        color: current_color,
        color_tag: current_tag,
        color_coord: current_coord,
    });
}

console.log(data[0]);

このコード・スニペットは、ランダムな色のリストを用意し、1,000個の実体を含むデータセットを生成する。各エンティティは、ID、5つの浮動小数点数のベクトル、色、色タグ、および3~5個の整数値を含む配列フィールドcolor_coord 。サンプル・データを印刷して、その構造を検証する。

出力構造:

{
    id: 0,
    vector: [
        0.0338537420906162,
        0.6844108238358322,
        0.28410588909961754,
        0.09752595400212116,
        0.22671013058761114
    ],
    color: 'orange',
    color_tag: 5677,
    color_coord: [ 3, 0, 18, 29 ]
}

Milvusクライアントのセットアップ

Milvusと対話するために、サーバアドレスを指定してMilvusクライアントをセットアップします。

from pymilvus import MilvusClient, DataType

SERVER_ADDR = "http://localhost:19530"

client = MilvusClient(uri=SERVER_ADDR)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.common.DataType;

String SERVER_ADDR = "http://localhost:19530";

// 1. Connect to Milvus server
ConnectConfig connectConfig = ConnectConfig.builder()
    .uri(SERVER_ADDR)
    .build();

MilvusClientV2 client = new MilvusClientV2(connectConfig);
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

// Connect to Milvus server
const address = "http://localhost:19530";

const milvusClient = new MilvusClient({address: address});

配列フィールドを持つコレクションの作成

コレクション・スキーマの定義

スキーマは、フィールドとそのデータ型を含むコレクションの構造を定義します。以下の例は、前のセクションで生成されたサンプル・データに一致するコレクション・スキーマを定義します。

コレクションに配列フィールドを設定する:

  1. datatype:DataType.ARRAY として構成する。
  2. element_type: 配列の要素のデータ型を選択する。配列フィールドの要素は、すべて同じデータ型を持つ必要があります。この例では、element_typeDataType.INT64 に設定する。
  3. Define themax_capacity: このパラメータを設定して、配列フィールドが保持できる要素の最大数を指定します。
  1. dataType:DataType.Array として設定する。
  2. Specify theelementType: 配列の要素のデータ型を選択します。配列フィールドの要素は、すべて同じデータ型を持つ必要があります。この例では、elementTypeDataType.Int64 に設定する。
  3. Define themaxCapacity: このパラメータを設定して、配列フィールドが保持できる要素の最大数を指定します。
  1. data_type:DataType.Array として設定する。
  2. Specify theelement_type: 配列の要素のデータ型を選択します。配列フィールドの要素は、すべて同じデータ型を持つ必要があります。この例では、element_typeDataType.Int64 に設定する。
  3. Define themax_capacity: このパラメータを設定して、配列フィールドが保持できる要素の最大数を指定します。

以下のコード例では、最大 5 要素、各要素が整数データ型の配列フィールドcolor_coord を持つコレクションスキーマを定義しています。

schema = client.create_schema(auto_id=False, enable_dynamic_field=False)

schema.add_field(field_name="id", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=5)
schema.add_field(field_name="color", datatype=DataType.VARCHAR, max_length=512)
schema.add_field(field_name="color_tag", datatype=DataType.INT64)
schema.add_field(field_name="color_coord", datatype=DataType.ARRAY, element_type=DataType.INT64, max_capacity=5)
// Create schema
CreateCollectionReq.CollectionSchema schema = client.createSchema();

// Add fields to schema
schema.addField(AddFieldReq.builder()
    .fieldName("id")
    .dataType(DataType.Int64)
    .isPrimaryKey(true)
    .autoID(false)
    .build());

schema.addField(AddFieldReq.builder()
    .fieldName("vector")
    .dataType(DataType.FloatVector)
    .dimension(5)
    .build());
    
schema.addField(AddFieldReq.builder()
    .fieldName("color")
    .dataType(DataType.VarChar)
    .maxLength(512)
    .build());

schema.addField(AddFieldReq.builder()
    .fieldName("color_tag")
    .dataType(DataType.Int64)
    .build());

schema.addField(AddFieldReq.builder()
    .fieldName("color_coord")
    .dataType(DataType.Array)
    .elementType(DataType.Int64)
    .maxCapacity(5)
    .build());
const fields = [
    {
        name: "id",
        data_type: DataType.Int64,
        is_primary_key: true,
        auto_id: false
    },
    {
        name: "vector",
        data_type: DataType.FloatVector,
        dim: 5
    },
    {
        name: "color",
        data_type: DataType.VarChar,
        max_length: 512
    },
    {
        name: "color_tag",
        data_type: DataType.Int64,
    },
    {
        name: "color_coord",
        data_type: DataType.Array,
        element_type: DataType.Int64,
        max_capacity: 5
    }
];

メソッドとパラメータの詳細については、create_schemaと add_fieldを参照のこと。

メソッドとパラメータの詳細については、createSchemaおよびaddField を参照してください。

メソッドとパラメータの詳細については、createCollectionを参照してください。

コレクションの作成

次に、定義されたスキーマを使用してコレクションを作成する。

client.create_collection(collection_name="test_collection", schema=schema)
client.list_collections()

# Output:
# ['test_collection']
CreateCollectionReq customizedSetupReq = CreateCollectionReq.builder()
    .collectionName("test_collection")
    .collectionSchema(schema)
    .build();

client.createCollection(customizedSetupReq);
await client.createCollection({
    collection_name: "test_collection",
    fields: fields
});

const res = await client.listCollections({collection_name: "test_collection"});

console.log("Existing collections: " + res.collection_names);

// Output:
// Existing collections: test_collection

メソッドとパラメータの詳細についてはcreate_collectionlist_collections を参照。

メソッドとパラメータの詳細についてはcreateCollection を参照。

メソッドとパラメータの詳細については、createCollectionおよびlistCollections を参照ください。

インデックスの作成

インデックスは検索やクエリ操作のパフォーマンスを向上させます。Milvusではベクトルフィールドとスカラーフィールドの両方にインデックスを作成することができます。この例では、ベクトルフィールドvectorIVF_FLAT インデックスを、配列フィールドcolor_coordINVERTED インデックスを作成します。インデックスの詳細については、「ベクトル・フィールドのインデックス」と「スカラー・ フィールドのインデックス」を参照してください。

ベクトル・フィールドのインデックス

ベクトル・フィールドにインデックスを作成すると、ベクトル類似検索のパフォーマンスが向上します。

以下の例では、ベクトル・フィールドvectorIVF_FLAT 型のインデックスを作成しています。

index_params = client.prepare_index_params()

index_params.add_index(
    field_name="vector",
    metric_type="COSINE",
    index_type="IVF_FLAT",
    index_name="vector_index",
    params={"nlist": 128}
)

client.create_index(collection_name="test_collection", index_params=index_params)
client.describe_index(collection_name="test_collection", index_name="vector_index")

# Output:
# {'nlist': '128',
#  'index_type': 'IVF_FLAT',
#  'metric_type': 'COSINE',
#  'field_name': 'vector',
#  'index_name': 'vector_index'}
IndexParam indexParam = IndexParam.builder()
        .metricType(IndexParam.MetricType.COSINE)
        .indexType(IndexParam.IndexType.IVF_FLAT)
        .fieldName("vector")
        .indexName("vector_index")
        .build();
CreateIndexReq createIndexReq = CreateIndexReq.builder()
        .collectionName("test_collection")
        .indexParams(Collections.singletonList(indexParam))
        .build();
client.createIndex(createIndexReq);
await client.createIndex({
    collection_name: "test_collection",
    field_name: "vector",
    index_type: "IVF_FLAT",
    metric_type: "COSINE",   
    index_name: "vector_index",
    params: { "nlist": 128 }
});

res = await client.describeIndex({
    collection_name: "test_collection",
    index_name: "vector_index"
});

console.log("Vector index description: " + JSON.stringify(res));

// Output:
// Vector index description: {"index_descriptions":[{"params":[{"key":"params","value":"{\"nlist\":128}"},{"key":"index_type","value":"IVF_FLAT"},{"key":"metric_type","value":"COSINE"}],"index_name":"vector_index","indexID":"451543183233666062","field_name":"vector","indexed_rows":"0","total_rows":"0","state":"Finished","index_state_fail_reason":"","pending_index_rows":"0"}],"status":{"extra_info":{},"error_code":"Success","reason":"","code":0,"retriable":false,"detail":""}}

メソッドとパラメータの詳細については、prepare_index_paramscreate_indexdescribe_indexを参照してください。

メソッドとパラメータの詳細については、IndexParamcreateIndex を参照してください。

メソッドとパラメータについての詳細はcreateIndex およびdescribeIndex を参照。

インデックス配列フィールド

スカラーフィールドにインデックスを作成すると、 そのフィールドに対するクエリの検索性能が向上します。

この例では、color_coord 配列フィールドに転置インデックスを作成します。これにより、このフィールドに基づくフィルタリングを高速化することができます。転置インデックスは全体的に優れた性能を発揮し、頻繁にデータを取得しない場合には生データを使った総当りフィルタリングを大幅に上回り、頻繁にデータを取得する場合には同等の性能を維持します。転置インデックスの詳細については、スカラー・インデックスを参照。

index_params = client.prepare_index_params()

index_params.add_index(
    field_name="color_coord",
    index_type="INVERTED",
    index_name="inverted_index"
)

client.create_index(collection_name="test_collection", index_params=index_params)
client.describe_index(collection_name="test_collection", index_name="inverted_index")

# Output:
# {'index_type': 'INVERTED',
#  'field_name': 'color_coord',
#  'index_name': 'inverted_index'}
IndexParam indexParam = IndexParam.builder()
        .indexType(IndexParam.IndexType.INVERTED)
        .fieldName("color_coord")
        .indexName("inverted_index")
        .build();
CreateIndexReq createIndexReq = CreateIndexReq.builder()
        .collectionName("test_collection")
        .indexParams(Collections.singletonList(indexParam))
        .build();
client.createIndex(createIndexReq);
await client.createIndex({
    collection_name: "test_collection",
    field_name: "color_coord",
    index_type: "INVERTED",
    index_name: "inverted_index"
});

res = await client.describeIndex({
    collection_name: "test_collection",
    index_name: "inverted_index"
});

console.log("Array index description: " + JSON.stringify(res));

// Output:
// Array index description: {"index_descriptions":[{"params":[{"key":"index_type","value":"INVERTED"}],"index_name":"inverted_index","indexID":"451543183233667243","field_name":"color_coord","indexed_rows":"0","total_rows":"0","state":"Finished","index_state_fail_reason":"","pending_index_rows":"0"}],"status":{"extra_info":{},"error_code":"Success","reason":"","code":0,"retriable":false,"detail":""}}

メソッドとパラメータの詳細については、prepare_index_paramscreate_indexdescribe_indexを参照してください。

メソッドとパラメータの詳細については、IndexParamcreateIndex を参照してください。

メソッドとパラメータについての詳細はcreateIndexdescribeIndex を参照。

データの挿入

コレクションとインデックスが作成されると、データをコレクションに挿入できます。このステップでは、test_collection に 1,000 個のエンティティを挿入します。

res = client.insert(collection_name="test_collection", data=data)
print(res)

# Output:
# {'insert_count': 1000, 'ids': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999], 'cost': 0}
InsertReq insertReq = InsertReq.builder()
    .collectionName("test_collection")
    .data(data)
    .build();

InsertResp insertResp = client.insert(insertReq);
res = await client.insert({
    collection_name: "test_collection",
    data: data
});

console.log(`Inserted ${res.insert_cnt} entities`);

// Output:
// Inserted 1000 entities

コレクションのロード

データを挿入した後、コレクションをロードして検索やクエリ操作で利用できるようにする必要がある。

client.load_collection('test_collection')
LoadCollectionReq loadCollectionReq = LoadCollectionReq.builder()
        .collectionName("test_collection")
        .build();
client.loadCollection(loadCollectionReq);
await client.loadCollection({
    collection_name: "test_collection"
});

res = await client.getLoadState({
    collection_name: "test_collection"
});

console.log("Collection load state: " + res.state);

// Output:
// Collection load state: LoadStateLoaded

基本的なスカラーフィルタリング

すべてのデータを追加したら、標準的なスカラー・フィールドと同じように、配列フィールドの要素を使用して検索やクエリを実行できます。

パラメータの詳細については、SDKリファレンスの search()を参照してください。

パラメータの詳細については、SDKリファレンスの search()を参照してください。

パラメータの詳細については、SDKリファレンスの search()を参照してください。

# 4. Basic search with the array field
query_vectors = [ [ random.uniform(-1, 1) for _ in range(5) ]]

res = client.search(
    collection_name="test_collection",
    data=query_vectors,
    filter="color_coord[0] < 10",
    search_params={
        "metric_type": "COSINE",
        "params": {"nprobe": 16}
    },
    output_fields=["id", "color", "color_tag", "color_coord"],
    limit=3
)

print(res)

# Output:
# data: ["[{'id': 918, 'distance': 0.974249541759491, 'entity': {'color_coord': [4, 34, 9, 18, 29], 'id': 918, 'color': 'purple', 'color_tag': 2940}}, {'id': 822, 'distance': 0.9177230000495911, 'entity': {'color_coord': [7, 36, 32], 'id': 822, 'color': 'red', 'color_tag': 8519}}, {'id': 981, 'distance': 0.9116519689559937, 'entity': {'color_coord': [7, 16, 40, 32, 32], 'id': 981, 'color': 'pink', 'color_tag': 2992}}]"] , extra_info: {'cost': 0}
// 4. Basic search with an Array field

QueryReq queryReq = QueryReq.builder()
    .collectionName("test_collection")
    .filter("color_coord[0] in [7, 8, 9]")
    .outputFields(Arrays.asList("id", "color", "color_tag", "color_coord"))
    .limit(3L)
    .build();

QueryResp queryResp = client.query(queryReq);

System.out.println(JSONObject.toJSON(queryResp));

// Output:
// {"queryResults": [
//     {"entity": {
//         "color": "orange",
//         "color_tag": 2464,
//         "id": 18,
//         "color_coord": [
//             9,
//             30
//         ]
//     }},
//     {"entity": {
//         "color": "pink",
//         "color_tag": 2602,
//         "id": 22,
//         "color_coord": [
//             8,
//             34,
//             16
//         ]
//     }},
//     {"entity": {
//         "color": "pink",
//         "color_tag": 1243,
//         "id": 42,
//         "color_coord": [
//             9,
//             20
//         ]
//     }}
// ]}
const query_vectors = [Array(5).fill(0).map(() => Math.random())];

res = await client.search({
    collection_name: "test_collection",
    data: query_vectors,
    filter: "color_coord[0] < 10",
    output_fields: ["id", "color", "color_tag", "color_coord"],
    limit: 3,
    metric_type: "COSINE"
});

console.log("Search result: " + JSON.stringify(res));

// Output:
// Search result: [
//     {
//         "score": 0.9969238042831421,
//         "id": "212",
//         "color": "green",
//         "color_tag": "5603",
//         "color_coord": [
//             "9",
//             "14",
//             "22",
//             "4",
//             "35"
//         ]
//     },
//     {
//         "score": 0.9952742457389832,
//         "id": "339",
//         "color": "yellow",
//         "color_tag": "8867",
//         "color_coord": [
//             "8",
//             "0",
//             "6",
//             "19",
//             "23"
//         ]
//     },
//     {
//         "score": 0.9944050312042236,
//         "id": "24",
//         "color": "red",
//         "color_tag": "7686",
//         "color_coord": [
//             "6",
//             "17",
//             "6",
//             "32"
//         ]
//     }
// ]

高度なフィルタリング

JSONフィールドにあるように、Milvusは配列に対する高度なフィルタリング演算子、すなわち、ARRAY_CONTAINSARRAY_CONTAINS_ALLARRAY_CONTAINS_ANYARRAY_LENGTH も提供しています。演算子の詳細については、配列フィルタのリファレンスを参照してください。

  • color_coord 値に10 を持つすべてのエンティティをフィルタリングします。

    # 5. Advanced query within the array field
    
    res = client.query(
        collection_name="test_collection",
        filter="ARRAY_CONTAINS(color_coord, 10)",
        output_fields=["id", "color", "color_tag", "color_coord"],
        limit=3
    )
    
    print(res)
    
    # Output:
    # data: ["{'id': 2, 'color': 'green', 'color_tag': 3676, 'color_coord': [26, 37, 30, 10]}", "{'id': 28, 'color': 'red', 'color_tag': 4735, 'color_coord': [30, 10, 40, 34]}", "{'id': 32, 'color': 'green', 'color_tag': 8816, 'color_coord': [10, 9, 24, 39]}"] , extra_info: {'cost': 0}
    
    // 5. Advanced query within an Array field
    queryReq = QueryReq.builder()
        .collectionName("test_collection")
        .filter("ARRAY_CONTAINS(color_coord, 10)")
        .outputFields(Arrays.asList("id", "color", "color_tag", "color_coord"))
        .limit(3)
        .build();
    
    queryResp = client.query(queryReq);
    
    System.out.println(JSONObject.toJSON(queryResp));
    
    // Output:
    // {"queryResults": [
    //     {"entity": {
    //         "color": "blue",
    //         "color_tag": 4337,
    //         "id": 17,
    //         "color_coord": [
    //             11,
    //             33,
    //             10,
    //             20
    //         ]
    //     }},
    //     {"entity": {
    //         "color": "white",
    //         "color_tag": 5219,
    //         "id": 25,
    //         "color_coord": [
    //             10,
    //             15
    //         ]
    //     }},
    //     {"entity": {
    //         "color": "red",
    //         "color_tag": 7120,
    //         "id": 35,
    //         "color_coord": [
    //             19,
    //             10,
    //             10,
    //             14
    //         ]
    //     }}
    // ]}
    
    // 5. Advanced search within the array field
    res = await client.search({
        collection_name: "test_collection",
        data: query_vectors,
        filter: "ARRAY_CONTAINS(color_coord, 10)",
        output_fields: ["id", "color", "color_tag", "color_coord"],
        limit: 3
    })
    
    console.log(JSON.stringify(res.results, null, 4))
    
    // Output
    // 
    // [
    //     {
    //         "score": 1.7962548732757568,
    //         "id": "696",
    //         "color": "red",
    //         "color_tag": "1798",
    //         "color_coord": [
    //             "33",
    //             "10",
    //             "37"
    //         ]
    //     },
    //     {
    //         "score": 1.7126177549362183,
    //         "id": "770",
    //         "color": "red",
    //         "color_tag": "1962",
    //         "color_coord": [
    //             "21",
    //             "23",
    //             "10"
    //         ]
    //     },
    //     {
    //         "score": 1.6707111597061157,
    //         "id": "981",
    //         "color": "yellow",
    //         "color_tag": "3100",
    //         "color_coord": [
    //             "28",
    //             "39",
    //             "10",
    //             "6"
    //         ]
    //     }
    // ]
    // 
    
  • color_coord の値に78 を持つすべてのエンティティをフィルタリングする。

    res = client.query(
        collection_name="test_collection",
        filter="ARRAY_CONTAINS_ALL(color_coord, [7, 8])",
        output_fields=["id", "color", "color_tag", "color_coord"],
        limit=3
    )
    
    print(res)
    
    # Output:
    # data: ["{'id': 147, 'color': 'brown', 'color_tag': 1287, 'color_coord': [7, 8, 11, 0]}", "{'id': 257, 'color': 'white', 'color_tag': 3641, 'color_coord': [2, 8, 31, 7]}", "{'id': 280, 'color': 'orange', 'color_tag': 1072, 'color_coord': [22, 7, 8]}"] , extra_info: {'cost': 0}
    
    queryReq = QueryReq.builder()
        .collectionName("test_collection")
        .filter("ARRAY_CONTAINS_ALL(color_coord, [7, 8, 9])")
        .outputFields(Arrays.asList("id", "color", "color_tag", "color_coord"))
        .limit(3)
        .build();
    
    queryResp = client.query(queryReq);
    
    System.out.println(JSONObject.toJSON(queryResp));     
    
    // Output:
    // {"queryResults": [{"entity": {
    //     "color": "red",
    //     "color_tag": 6986,
    //     "id": 423,
    //     "color_coord": [
    //         26,
    //         7,
    //         8,
    //         9
    //     ]
    // }}]}
    
    res = await client.search({
        collection_name: "test_collection",
        data: query_vectors,
        filter: "ARRAY_CONTAINS_ALL(color_coord, [7, 8])",
        output_fields: ["id", "color", "color_tag", "color_coord"],
        limit: 3
    })
    
    console.log(JSON.stringify(res.results, null, 4))
    
    // Output
    // 
    // [
    //     {
    //         "score": 0.8267516493797302,
    //         "id": "913",
    //         "color": "brown",
    //         "color_tag": "8897",
    //         "color_coord": [
    //             "39",
    //             "31",
    //             "8",
    //             "29",
    //             "7"
    //         ]
    //     },
    //     {
    //         "score": 0.6889009475708008,
    //         "id": "826",
    //         "color": "blue",
    //         "color_tag": "4903",
    //         "color_coord": [
    //             "7",
    //             "25",
    //             "5",
    //             "12",
    //             "8"
    //         ]
    //     },
    //     {
    //         "score": 0.5851659774780273,
    //         "id": "167",
    //         "color": "blue",
    //         "color_tag": "1550",
    //         "color_coord": [
    //             "8",
    //             "27",
    //             "7"
    //         ]
    //     }
    // ]
    // 
    
  • color_coord の値に 7、8、9 のいずれかを持つすべてのエンティティをフィルタリングする。

    res = client.query(
        collection_name="test_collection",
        filter="ARRAY_CONTAINS_ANY(color_coord, [7, 8, 9])",
        output_fields=["id", "color", "color_tag", "color_coord"],
        limit=3
    )
    
    print(res)
    
    # Output:
    # data: ["{'id': 0, 'color': 'white', 'color_tag': 2081, 'color_coord': [16, 7, 35, 5, 25]}", "{'id': 1, 'color': 'purple', 'color_tag': 4669, 'color_coord': [11, 9, 15, 38, 21]}", "{'id': 3, 'color': 'yellow', 'color_tag': 2612, 'color_coord': [0, 12, 22, 7]}"] , extra_info: {'cost': 0}
    
    queryReq = QueryReq.builder()
        .collectionName("test_collection")
        .filter("ARRAY_CONTAINS_ANY(color_coord, [7, 8, 9])")
        .outputFields(Arrays.asList("id", "color", "color_tag", "color_coord"))
        .limit(3)
        .build();
    
    queryResp = client.query(queryReq);
    
    System.out.println(JSONObject.toJSON(queryResp));   
    
    // Output:
    // {"queryResults": [
    //     {"entity": {
    //         "color": "orange",
    //         "color_tag": 2464,
    //         "id": 18,
    //         "color_coord": [
    //             9,
    //             30
    //         ]
    //     }},
    //     {"entity": {
    //         "color": "pink",
    //         "color_tag": 2602,
    //         "id": 22,
    //         "color_coord": [
    //             8,
    //             34,
    //             16
    //         ]
    //     }},
    //     {"entity": {
    //         "color": "pink",
    //         "color_tag": 1243,
    //         "id": 42,
    //         "color_coord": [
    //             9,
    //             20
    //         ]
    //     }}
    // ]}
    
    res = await client.search({
        collection_name: "test_collection",
        data: query_vectors,
        filter: "ARRAY_CONTAINS_ANY(color_coord, [7, 8, 9])",
        output_fields: ["id", "color", "color_tag", "color_coord"],
        limit: 3
    })
    
    console.log(JSON.stringify(res.results, null, 4))
    
    // Output
    // 
    // [
    //     {
    //         "score": 2.015894889831543,
    //         "id": "260",
    //         "color": "green",
    //         "color_tag": "5320",
    //         "color_coord": [
    //             "1",
    //             "7",
    //             "33",
    //             "13",
    //             "23"
    //         ]
    //     },
    //     {
    //         "score": 1.783075213432312,
    //         "id": "593",
    //         "color": "orange",
    //         "color_tag": "4079",
    //         "color_coord": [
    //             "8",
    //             "19"
    //         ]
    //     },
    //     {
    //         "score": 1.7713876962661743,
    //         "id": "874",
    //         "color": "blue",
    //         "color_tag": "7029",
    //         "color_coord": [
    //             "14",
    //             "8",
    //             "15"
    //         ]
    //     }
    // ]
    // 
    
  • ちょうど4つの要素を持つエンティティをフィルタリングする。

    res = client.query(
        collection_name="test_collection",
        filter="ARRAY_LENGTH(color_coord) == 4",
        output_fields=["id", "color", "color_tag", "color_coord"],
        limit=3
    )
    
    print(res)
    
    # Output:
    # data: ["{'id': 2, 'color': 'green', 'color_tag': 3676, 'color_coord': [26, 37, 30, 10]}", "{'id': 3, 'color': 'yellow', 'color_tag': 2612, 'color_coord': [0, 12, 22, 7]}", "{'id': 4, 'color': 'green', 'color_tag': 6912, 'color_coord': [4, 5, 19, 28]}"] , extra_info: {'cost': 0}
    
    queryReq = QueryReq.builder()
        .collectionName("test_collection")
        .filter("ARRAY_LENGTH(color_coord) == 4")
        .outputFields(Arrays.asList("id", "color", "color_tag", "color_coord"))
        .limit(3)
        .build();
    
    queryResp = client.query(queryReq);
    
    System.out.println(JSONObject.toJSON(queryResp));   
    
    // Output:
    // {"queryResults": [
    //     {"entity": {
    //         "color": "green",
    //         "color_tag": 2984,
    //         "id": 2,
    //         "color_coord": [
    //             27,
    //             31,
    //             23,
    //             29
    //         ]
    //     }},
    //     {"entity": {
    //         "color": "black",
    //         "color_tag": 6867,
    //         "id": 4,
    //         "color_coord": [
    //             37,
    //             3,
    //             30,
    //             33
    //         ]
    //     }},
    //     {"entity": {
    //         "color": "brown",
    //         "color_tag": 3464,
    //         "id": 10,
    //         "color_coord": [
    //             31,
    //             38,
    //             21,
    //             28
    //         ]
    //     }}
    // ]}
    
    res = await client.search({
    collection_name: "test_collection",
    data: query_vectors,
    filter: "ARRAY_LENGTH(color_coord) == 4",
    output_fields: ["id", "color", "color_tag", "color_coord"],
    limit: 3
    })
    
    console.log(JSON.stringify(res.results, null, 4))
    
    // Output
    // 
    // [
    //     {
    //         "score": 2.0404388904571533,
    //         "id": "439",
    //         "color": "orange",
    //         "color_tag": "7096",
    //         "color_coord": [
    //             "27",
    //             "34",
    //             "26",
    //             "39"
    //         ]
    //     },
    //     {
    //         "score": 1.9059759378433228,
    //         "id": "918",
    //         "color": "purple",
    //         "color_tag": "2903",
    //         "color_coord": [
    //             "28",
    //             "19",
    //             "36",
    //             "35"
    //         ]
    //     },
    //     {
    //         "score": 1.8385567665100098,
    //         "id": "92",
    //         "color": "yellow",
    //         "color_tag": "4693",
    //         "color_coord": [
    //             "1",
    //             "23",
    //             "2",
    //             "3"
    //         ]
    //     }
    // ]
    // 
    

制限

  • ARRAYフィールドの要素は、element_type で指定された同じデータ型でなければならない。Milvusのスカラーフィールドで使用可能な有効なデータ型であれば、element_type 。サポートされるデータ型のリストについては、サポートされるデータ型を参照してください。

  • ARRAYフィールドの要素数は、max_capacity で指定された配列フィールドの最大容量以下でなければなりません。

配列フィルタのリファレンス

配列フィールドを扱う場合、文字列値をダブルクォーテーション("")またはシングルクォーテーション('')で囲むことができます。ここで重要なことは、Milvusはセマンティックエスケープや変換を行わず、文字列値をそのまま配列フィールドに格納するということです。例えば、'a "b'、 'a'b'、 ' a'b'、'a "b'はそのまま保存され、'a'b''a "b'は無効な値として扱われます。

2つの配列フィールドint_arrayvar_array が定義されているとする。以下の表は、expr で配列フィールドを検索する際に使用できる、サポートされているブーリアン式について説明したものです。

演算子備考
<‘int_array[0] < 3’この式は、int_array[0] の値が 3 より小さい場合に真と評価されます。
>‘int_array[0] > 5’この式は、int_array[0] の値が 5 より大きい場合に真と評価されます。
==‘int_array[0] == 0’この式は、int_array[0] の値が 0 に等しい場合に真と評価される。
!=‘var_array[0] != "a"’この式は、var_array[0] の値が“a” と等しくない場合に真と評価される。
<=‘int_array[0] <= 3’この式は、int_array[0] の値が 3 より小さいか等しい場合に真と評価される。
>=‘int_array[0] >= 10’この式は、int_array[0] の値が 10 以上の場合に真と評価される。
in'var_array[0] in ["str1", “str2”]'この式は、var_array[0] の値が“str1” または“str2” の場合に真と評価される。
not in'int_array[0] not in [1, 2, 3]'この式は、int_array[0] の値が 1、2、または 3 でない場合に真と評価される。
+, -, *, /, %, **‘int_array[0] + 100 > 200’この式は、int_array[0] + 100 の値が 200 より大きい場合に真と評価される。
ライク (LIKE)‘var_array[0] like "prefix%"’この式は、var_array[0] の値の前に“prefix” が付いている場合に真と評価されます。
および (&&)‘var_array[0] like “prefix%” && int_array[0] <= 100’この式は、var_array[0] の値の前に“prefix” が付き、int_array[0] の値が 100 以下の場合に真と評価される。
または (||)‘var_array[0] like “prefix%” || int_array[0] <= 100’この式は、var_array[0] の値の前に“prefix” が付いている場合、またはint_array[0] の値が 100 より小さいか等しい場合に真と評価されます。
array_contains (ARRAY_CONTAINS)'array_contains(int_array, 100)'この式は、int_array が要素100 を含む場合に真と評価されます。
array_contains_all (ARRAY_CONTAINS_ALL)'array_contains_all(int_array, [1, 2, 3])'この式は、int_array がすべての要素123 を含む場合に真と評価されます。
array_contains_any (ARRAY_CONTAINS_ANY)'array_contains_any(var_array, ["a", "b", “c”])'この式は、var_array“a”,“b”,“c” のいずれかの要素を含む場合に真と評価されます。
配列の長さ‘array_length(int_array) == 10’この式は、int_array がちょうど10個の要素を含む場合に真と評価されます。