milvus-logo
LFAI
Home

Esegui Milvus usando Python

Questa sezione descrive come eseguire Milvus usando Python.

1. Installa PyMilvus

pip3 install pymilvus==2.0.x
E' richiesto Python 3.6 o versioni successive. Vedi Downloading Python per maggiori informazioni.

2. Scarica il codice di esempio

$ wget https://raw.githubusercontent.com/milvus-io/pymilvus/v2.0.x/examples/hello_milvus.py

3. Scannerizza il campione

Il codice di esempio esegue i seguenti passaggi.

  • Importa il pacchetto PyMilvus:
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection
  • Si connette ad un server:
connections.connect(host='localhost', port='19530')
  • Crea una collezione:
dim = 128
default_fields = [
    FieldSchema(name="count", dtype=DataType.INT64, is_primary=True),
    FieldSchema(name="random_value", dtype=DataType.DOUBLE),
    FieldSchema(name="float_vector", dtype=DataType.FLOAT_VECTOR, dim=dim)
]
default_schema = CollectionSchema(fields=default_fields, description="test collection")

print(f"\nCreate collection...")
collection = Collection(name="hello_milvus", schema=default_schema)
  • Inserisce dei vettori nella collezione:
import random
nb = 3000
vectors = [[random.random() for _ in range(dim)] for _ in range(nb)]
collection.insert(
    [
        [i for i in range(nb)],
        [float(random.randrange(-20,-10)) for _ in range(nb)],
        vectors
    ]
)
  • Crea degli indici e carica la collezione:
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
collection.create_index(field_name="float_vector", index_params=default_index)
collection.load()
  • Esegue una ricerca di somiglianza vettoriale:
topK = 5
search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
# define output_fields of search result
res = collection.search(
    vectors[-2:], "float_vector", search_params, topK,
    "count > 100", output_fields=["count", "random_value"]
)

Per stampare i risultati della ricerca per ID e per distanza, esegui il seguente comando.

for raw_result in res:
    for result in raw_result:
        id = result.id  # result id
        distance = result.distance
        print(id, distance)

Vedi API Reference per maggiori informazioni.

  • Esegue una ricerca ibrida:
Il seguente esempio esegue una ricerca approssimata nelle entità con film_id che spazia tra [2,4,6,8].
from pymilvus import connections, Collection, FieldSchema, CollectionSchema, DataType
import random
connections.connect()
schema = CollectionSchema([
    FieldSchema("film_id", DataType.INT64, is_primary=True),
    FieldSchema("films", dtype=DataType.FLOAT_VECTOR, dim=2)
])
collection = Collection("test_collection_search", schema)
# insert
data = [
    [i for i in range(10)],
    [[random.random() for _ in range(2)] for _ in range(10)],
]
collection.insert(data)
collection.num_entities
10
collection.load()
# search
search_param = {
    "data": [[1.0, 1.0]],
    "anns_field": "films",
    "param": {"metric_type": "L2"},
    "limit": 2,
    "expr": "film_id in [2,4,6,8]",
}
res = collection.search(**search_param)
assert len(res) == 1
hits = res[0]
assert len(hits) == 2
print(f"- Total hits: {len(hits)}, hits ids: {hits.ids} ")
- Total hits: 2, hits ids: [2, 4]
print(f"- Top1 hit id: {hits[0].id}, distance: {hits[0].distance}, score: {hits[0].score} ")
- Top1 hit id: 2, distance: 0.10143111646175385, score: 0.101431116461

4. Esegui il campione

$ python3 hello_milvus.py

I risultati ritornati e la latenza della query vengono mostrati come segue:

Search...

(distance: 0.0, id: 2998) -20.0

(distance: 13.2614107131958, id: 989) -11.0

(distance: 14.489648818969727, id: 1763) -19.0

(distance: 15.295698165893555, id: 968) -20.0

(distance: 15.34445571899414, id: 2049) -19.0

(distance: 0.0, id: 2999) -12.0

(distance: 14.63361930847168, id: 1259) -13.0

(distance: 15.421361923217773, id: 2530) -15.0

(distance: 15.427900314331055, id: 600) -14.0

(distance: 15.538337707519531, id: 637) -19.0

search latency = 0.0549s


Congratulazioni! Sei riuscito ad avviare Milvus indipendentemente e hai eseguito la tua prima ricerca di somiglianza vettoriale.

Feedback

Was this page helpful?