milvus-logo
LFAI
Home
  • User Guide

Query

In addition to ANN searches, Milvus also supports metadata filtering through queries. This page introduces how to use Query, Get, and QueryIterators to perform metadata filtering.

Overview

A Collection can store various types of scalar fields. You can have Milvus filter Entities based on one or more scalar fields. Milvus offers three types of queries: Query, Get, and QueryIterator. The table below compares these three query types.

Get

Query

QueryIterator

Applicable scenarios

To find entities that hold the specified primary keys.

To find all or a specified number of entities that meet the custom filtering conditions

To find all entities that meet the custom filtering conditions in paginated queries.

Filtering method

By primary keys

By filtering expressions.

By filtering expressions.

Mandatory parameters

  • Collection name

  • Primary keys

  • Collection name

  • Filtering expressions

  • Collection name

  • Filtering expressions

  • Number of entities to return per query

Optional parameters

  • Partition name

  • Output fields

  • Partition name

  • Number of entities to return

  • Output fields

  • Partition name

  • Number of entities to return in total

  • Output fields

Returns

Returns entities that hold the specified primary keys in the specified collection or partition.

Returns all or a specified number of entities that meet the custom filtering conditions in the specified collection or partition.

Returns all entities that meet the custom filtering conditions in the specified collection or partition through paginated queries.

For more on metadata filtering, refer to Metadata Filtering.

Use Get

When you need to find entities by their primary keys, you can use the Get method. The following code examples assume that there are three fields named id, vector, and color in your collection and return the entities with primary keys 1, 2, and 3.

[
        {"id": 0, "vector": [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592], "color": "pink_8682"},
        {"id": 1, "vector": [0.19886812562848388, 0.06023560599112088, 0.6976963061752597, 0.2614474506242501, 0.838729485096104], "color": "red_7025"},
        {"id": 2, "vector": [0.43742130801983836, -0.5597502546264526, 0.6457887650909682, 0.7894058910881185, 0.20785793220625592], "color": "orange_6781"},
        {"id": 3, "vector": [0.3172005263489739, 0.9719044792798428, -0.36981146090600725, -0.4860894583077995, 0.95791889146345], "color": "pink_9298"},
        {"id": 4, "vector": [0.4452349528804562, -0.8757026943054742, 0.8220779437047674, 0.46406290649483184, 0.30337481143159106], "color": "red_4794"},
        {"id": 5, "vector": [0.985825131989184, -0.8144651566660419, 0.6299267002202009, 0.1206906911183383, -0.1446277761879955], "color": "yellow_4222"},
        {"id": 6, "vector": [0.8371977790571115, -0.015764369584852833, -0.31062937026679327, -0.562666951622192, -0.8984947637863987], "color": "red_9392"},
        {"id": 7, "vector": [-0.33445148015177995, -0.2567135004164067, 0.8987539745369246, 0.9402995886420709, 0.5378064918413052], "color": "grey_8510"},
        {"id": 8, "vector": [0.39524717779832685, 0.4000257286739164, -0.5890507376891594, -0.8650502298996872, -0.6140360785406336], "color": "white_9381"},
        {"id": 9, "vector": [0.5718280481994695, 0.24070317428066512, -0.3737913482606834, -0.06726932177492717, -0.6980531615588608], "color": "purple_4976"},
]

from pymilvus import MilvusClient

client = MilvusClient(
    uri="http://localhost:19530",
    token="root:Milvus"
)

res = client.get(
    collection_name="query_collection",
    ids=[0, 1, 2],
    output_fields=["vector", "color"]
)

print(res)

import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.vector.request.GetReq
import io.milvus.v2.service.vector.request.GetResp
import java.util.*;

MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
        .uri("http://localhost:19530")
        .token("root:Milvus")
        .build());
        
GetReq getReq = GetReq.builder()
        .collectionName("query_collection")
        .ids(Arrays.asList(0, 1, 2))
        .outputFields(Arrays.asList("vector", "color"))
        .build();

GetResp getResp = client.get(getReq);

List<QueryResp.QueryResult> results = getResp.getGetResults();
for (QueryResp.QueryResult result : results) {
    System.out.println(result.getEntity());
}

// Output
// {color=pink_8682, vector=[0.35803765, -0.6023496, 0.18414013, -0.26286206, 0.90294385], id=0}
// {color=red_7025, vector=[0.19886813, 0.060235605, 0.6976963, 0.26144746, 0.8387295], id=1}
// {color=orange_6781, vector=[0.43742132, -0.55975026, 0.6457888, 0.7894059, 0.20785794], id=2}

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});

const res = client.get({
    collection_name="query_collection",
    ids=[0,1,2],
    output_fields=["vector", "color"]
})

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/get" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "quick_setup",
    "id": [0, 1, 2],
    "outputFields": ["vector", "color"]
}'

# {"code":0,"cost":0,"data":[{"color":"pink_8682","id":0,"vector":[0.35803765,-0.6023496,0.18414013,-0.26286206,0.90294385]},{"color":"red_7025","id":1,"vector":[0.19886813,0.060235605,0.6976963,0.26144746,0.8387295]},{"color":"orange_6781","id":2,"vector":[0.43742132,-0.55975026,0.6457888,0.7894059,0.20785794]}]}

Use Query

When you need to find entities by custom filtering conditions, use the Query method. The following code examples assume there are three fields named id, vector, and color and return the specified number of entities that hold a color value starting with red.

from pymilvus import MilvusClient

client = MilvusClient(
    uri="http://localhost:19530",
    token="root:Milvus"
)

res = client.query(
    collection_name="query_collection",
    filter="color like \"red%\"",
    output_fields=["vector", "color"],
    limit=3
)


import io.milvus.v2.service.vector.request.QueryReq
import io.milvus.v2.service.vector.request.QueryResp


QueryReq queryReq = QueryReq.builder()
        .collectionName("query_collection")
        .filter("color like \"red%\"")
        .outputFields(Arrays.asList("vector", "color"))
        .limit(3)
        .build();

QueryResp getResp = client.query(queryReq);

List<QueryResp.QueryResult> results = getResp.getQueryResults();
for (QueryResp.QueryResult result : results) {
    System.out.println(result.getEntity());
}

// Output
// {color=red_7025, vector=[0.19886813, 0.060235605, 0.6976963, 0.26144746, 0.8387295], id=1}
// {color=red_4794, vector=[0.44523495, -0.8757027, 0.82207793, 0.4640629, 0.3033748], id=4}
// {color=red_9392, vector=[0.8371978, -0.015764369, -0.31062937, -0.56266695, -0.8984948], id=6}

import (
    "context"
    "fmt"
    "log"

    "github.com/milvus-io/milvus/client/v2"
)

func ExampleClient_Query_basic() {
    ctx, cancel := context.WithCancel(context.Background())
    defer cancel()

    milvusAddr := "127.0.0.1:19530"
    token := "root:Milvus"

    cli, err := client.New(ctx, &client.ClientConfig{
        Address: milvusAddr,
        APIKey:  token,
    })
    if err != nil {
        log.Fatal("failed to connect to milvus server: ", err.Error())
    }

    defer cli.Close(ctx)

    resultSet, err := cli.Query(ctx, client.NewQueryOption("query_collection").
        WithFilter(`color like "red%"`).
        WithOutputFields("vector", "color").
        WithLimit(3))

    fmt.Println(resultSet.GetColumn("color"))
}


import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});

const res = client.query({
    collection_name="quick_setup",
    filter='color like "red%"',
    output_fields=["vector", "color"],
    limit(3)
})

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "quick_setup",
    "filter": "color like \"red%\"",
    "limit": 3,
    "outputFields": ["vector", "color"]
}'
#{"code":0,"cost":0,"data":[{"color":"red_7025","id":1,"vector":[0.19886813,0.060235605,0.6976963,0.26144746,0.8387295]},{"color":"red_4794","id":4,"vector":[0.44523495,-0.8757027,0.82207793,0.4640629,0.3033748]},{"color":"red_9392","id":6,"vector":[0.8371978,-0.015764369,-0.31062937,-0.56266695,-0.8984948]}]}

Use QueryIterator

When you need to find entities by custom filtering conditions through paginated queries, create a QueryIterator and use its next() method to iterate over all entities to find those meeting the filtering conditions. The following code examples assume that there are three fields named id, vector, and color and return all entities that hold a color value starting with red.

from pymilvus import connections, Collection

connections.connect(
    uri="http://localhost:19530",
    token="root:Milvus"
)

collection = Collection("query_collection")

iterator = collection.query_iterator(
    batch_size=10,
    expr="color like \"red%\"",
    output_fields=["color"]
)

results = []

while True:
    result = iterator.next()
    if not result:
        iterator.close()
        break

    print(result)
    results += result

import io.milvus.orm.iterator.QueryIterator;
import io.milvus.response.QueryResultsWrapper;
import io.milvus.v2.common.ConsistencyLevel;
import io.milvus.v2.service.vector.request.QueryIteratorReq;


QueryIteratorReq req = QueryIteratorReq.builder()
        .collectionName("query_collection")
        .expr("color like \"red%\"")
        .batchSize(50L)
        .outputFields(Collections.singletonList("color"))
        .consistencyLevel(ConsistencyLevel.BOUNDED)
        .build();
QueryIterator queryIterator = client.queryIterator(req);

while (true) {
    List<QueryResultsWrapper.RowRecord> res = queryIterator.next();
    if (res.isEmpty()) {
        queryIterator.close();
        break;
    }

    for (QueryResultsWrapper.RowRecord record : res) {
        System.out.println(record);
    }
}

// Output
// [color:red_7025, id:1]
// [color:red_4794, id:4]
// [color:red_9392, id:6]

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const iterator = await milvusClient.queryIterator({
  collection_name: 'query_collection',
  batchSize: 10,
  expr: 'color like "red%"',
  output_fields: ['color'],
});

const results = [];
for await (const value of iterator) {
  results.push(...value);
  page += 1;
}

# Currently not available

Queries in Partitions

You can also perform queries within one or multiple partitions by including the partition names in the Get, Query, or QueryIterator request. The following code examples assume that there is a partition named PartitionA in the collection.

from pymilvus import MilvusClient
client = MilvusClient(
    uri="http://localhost:19530",
    token="root:Milvus"
)

res = client.get(
    collection_name="query_collection",
    # highlight-next-line
    partitionNames=["partitionA"],
    ids=[0, 1, 2],
    output_fields=["vector", "color"]
)

from pymilvus import MilvusClient

client = MilvusClient(
    uri="http://localhost:19530",
    token="root:Milvus"
)

res = client.query(
    collection_name="query_collection",
    # highlight-next-line
    partitionNames=["partitionA"],
    filter="color like \"red%\"",
    output_fields=["vector", "color"],
    limit=3
)

# 使用 QueryIterator
from pymilvus import connections, Collection

connections.connect(
    uri="http://localhost:19530",
    token="root:Milvus"
)

collection = Collection("query_collection")

iterator = collection.query_iterator(
    # highlight-next-line
    partition_names=["partitionA"],
    batch_size=10,
    expr="color like \"red%\"",
    output_fields=["color"]
)

results = []

while True:
    result = iterator.next()
    if not result:
        iterator.close()
        break

    print(result)
    results += result

GetReq getReq = GetReq.builder()
        .collectionName("query_collection")
        .partitionName("partitionA")
        .ids(Arrays.asList(10, 11, 12))
        .outputFields(Collections.singletonList("color"))
        .build();

GetResp getResp = client.get(getReq);


QueryReq queryReq = QueryReq.builder()
        .collectionName("query_collection")
        .partitionNames(Collections.singletonList("partitionA"))
        .filter("color like \"red%\"")
        .outputFields(Collections.singletonList("color"))
        .limit(3)
        .build();

QueryResp getResp = client.query(queryReq);


QueryIteratorReq req = QueryIteratorReq.builder()
        .collectionName("query_collection")
        .partitionNames(Collections.singletonList("partitionA"))
        .expr("color like \"red%\"")
        .batchSize(50L)
        .outputFields(Collections.singletonList("color"))
        .consistencyLevel(ConsistencyLevel.BOUNDED)
        .build();
QueryIterator queryIterator = client.queryIterator(req);

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});

// 使用 Get 方法
var res = client.query({
    collection_name="query_collection",
    // highlight-next-line
    partition_names=["partitionA"],
    filter='color like "red%"',
    output_fields=["vector", "color"],
    limit(3)
})

// 使用 Query 方法
res = client.query({
    collection_name="query_collection",
    // highlight-next-line
    partition_names=["partitionA"],
    filter="color like \"red%\"",
    output_fields=["vector", "color"],
    limit(3)
})

// 暂不支持使用 QueryIterator
const iterator = await milvusClient.queryIterator({
  collection_name: 'query_collection',
  partition_names: ['partitionA'],
  batchSize: 10,
  expr: 'color like "red%"',
  output_fields: ['vector', 'color'],
});

const results = [];
for await (const value of iterator) {
  results.push(...value);
  page += 1;
}

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

# 使用 Get 方法
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/get" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "query_collection",
    "partitionNames": ["partitionA"],
    "id": [0, 1, 2],
    "outputFields": ["vector", "color"]
}'

# 使用 Query 方法
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/get" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "query_collection",
    "partitionNames": ["partitionA"],
    "filter": "color like \"red%\"",
    "limit": 3,
    "outputFields": ["vector", "color"],
    "id": [0, 1, 2]
}'

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

Was this page helpful?