milvus-logo
LFAI
Casa
  • Integrazioni

Generazione Aumentata dal Recupero (RAG) con Milvus e LangChain

Open In Colab

Questa guida mostra come costruire un sistema di Retrieval-Augmented Generation (RAG) utilizzando LangChain e Milvus.

Il sistema RAG combina un sistema di recupero con un modello generativo per generare nuovo testo sulla base di un prompt dato. Il sistema recupera prima i documenti rilevanti da un corpus utilizzando Milvus e poi utilizza un modello generativo per generare nuovo testo sulla base dei documenti recuperati.

LangChain è un framework per lo sviluppo di applicazioni basate su modelli linguistici di grandi dimensioni (LLM). Milvus è il database vettoriale open-source più avanzato al mondo, costruito per alimentare le applicazioni di ricerca di similarità e di intelligenza artificiale.

Prerequisiti

Prima di eseguire questo notebook, assicuratevi di aver installato le seguenti dipendenze:

$ pip install --upgrade --quiet  langchain langchain-core langchain-community langchain-text-splitters langchain-milvus langchain-openai bs4

Se si utilizza Google Colab, per abilitare le dipendenze appena installate potrebbe essere necessario riavviare il runtime. (Fare clic sul menu "Runtime" nella parte superiore dello schermo e selezionare "Riavvia sessione" dal menu a discesa).

Utilizzeremo i modelli di OpenAI. È necessario preparare la chiave api OPENAI_API_KEY come variabile d'ambiente.

import os

os.environ["OPENAI_API_KEY"] = "sk-***********"

Preparare i dati

Utilizziamo Langchain WebBaseLoader per caricare i documenti da fonti web e dividerli in parti utilizzando RecursiveCharacterTextSplitter.

import bs4
from langchain_community.document_loaders import WebBaseLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter

# Create a WebBaseLoader instance to load documents from web sources
loader = WebBaseLoader(
    web_paths=(
        "https://lilianweng.github.io/posts/2023-06-23-agent/",
        "https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/",
    ),
    bs_kwargs=dict(
        parse_only=bs4.SoupStrainer(
            class_=("post-content", "post-title", "post-header")
        )
    ),
)
# Load documents from web sources using the loader
documents = loader.load()
# Initialize a RecursiveCharacterTextSplitter for splitting text into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200)

# Split the documents into chunks using the text_splitter
docs = text_splitter.split_documents(documents)

# Let's take a look at the first document
docs[1]
Document(page_content='Fig. 1. Overview of a LLM-powered autonomous agent system.\nComponent One: Planning#\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\nTask Decomposition#\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\nTask decomposition can be done (1) by LLM with simple prompting like "Steps for XYZ.\\n1.", "What are the subgoals for achieving XYZ?", (2) by using task-specific instructions; e.g. "Write a story outline." for writing a novel, or (3) with human inputs.\nAnother quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external classical planner to do long-horizon planning. This approach utilizes the Planning Domain Definition Language (PDDL) as an intermediate interface to describe the planning problem. In this process, LLM (1) translates the problem into “Problem PDDL”, then (2) requests a classical planner to generate a PDDL plan based on an existing “Domain PDDL”, and finally (3) translates the PDDL plan back into natural language. Essentially, the planning step is outsourced to an external tool, assuming the availability of domain-specific PDDL and a suitable planner which is common in certain robotic setups but not in many other domains.\nSelf-Reflection#', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/'})

Come si può vedere, il documento è già suddiviso in pezzi. Il contenuto dei dati riguarda l'agente AI.

Costruire la catena RAG con il Milvus Vector Store

Inizializzeremo un archivio vettoriale Milvus con i documenti, per poi caricare i documenti nell'archivio vettoriale Milvus e costruire un indice sotto il cofano.

from langchain_milvus import Milvus, Zilliz
from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings()

vectorstore = Milvus.from_documents(  # or Zilliz.from_documents
    documents=docs,
    embedding=embeddings,
    connection_args={
        "uri": "./milvus_demo.db",
    },
    drop_old=True,  # Drop the old Milvus collection if it exists
)

Per connection_args:

  • L'impostazione di uri come file locale, ad esempio./milvus.db, è il metodo più conveniente, poiché utilizza automaticamente Milvus Lite per memorizzare tutti i dati in questo file.
  • Se si dispone di una grande quantità di dati, è possibile configurare un server Milvus più performante su docker o kubernetes. In questa configurazione, utilizzare l'uri del server, ad esempiohttp://localhost:19530, come uri.
  • Se si desidera utilizzare Zilliz Cloud, il servizio cloud completamente gestito per Milvus, sostituire Milvus.from_documents con Zilliz.from_documents, e regolare uri e token, che corrispondono all'endpoint pubblico e alla chiave Api di Zilliz Cloud.

Cercare i documenti nell'archivio vettoriale di Milvus utilizzando una domanda di prova. Osserviamo il primo documento.

query = "What is self-reflection of an AI Agent?"
vectorstore.similarity_search(query, k=1)
[Document(page_content='Self-Reflection#\nSelf-reflection is a vital aspect that allows autonomous agents to improve iteratively by refining past action decisions and correcting previous mistakes. It plays a crucial role in real-world tasks where trial and error are inevitable.\nReAct (Yao et al. 2023) integrates reasoning and acting within LLM by extending the action space to be a combination of task-specific discrete actions and the language space. The former enables LLM to interact with the environment (e.g. use Wikipedia search API), while the latter prompting LLM to generate reasoning traces in natural language.\nThe ReAct prompt template incorporates explicit steps for LLM to think, roughly formatted as:\nThought: ...\nAction: ...\nObservation: ...\n... (Repeated many times)', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'pk': 449281835035555859})]
from langchain_core.runnables import RunnablePassthrough
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI

# Initialize the OpenAI language model for response generation
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)

# Define the prompt template for generating AI responses
PROMPT_TEMPLATE = """
Human: You are an AI assistant, and provides answers to questions by using fact based and statistical information when possible.
Use the following pieces of information to provide a concise answer to the question enclosed in <question> tags.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
<context>
{context}
</context>

<question>
{question}
</question>

The response should be specific and use statistics or numbers when possible.

Assistant:"""

# Create a PromptTemplate instance with the defined template and input variables
prompt = PromptTemplate(
    template=PROMPT_TEMPLATE, input_variables=["context", "question"]
)
# Convert the vector store to a retriever
retriever = vectorstore.as_retriever()


# Define a function to format the retrieved documents
def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

Utilizzare LCEL (LangChain Expression Language) per costruire una catena RAG.

# Define the RAG (Retrieval-Augmented Generation) chain for AI response generation
rag_chain = (
    {"context": retriever | format_docs, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
)

# rag_chain.get_graph().print_ascii()

# Invoke the RAG chain with a specific question and retrieve the response
res = rag_chain.invoke(query)
res
"Self-reflection of an AI agent involves the process of synthesizing memories into higher-level inferences over time to guide the agent's future behavior. It serves as a mechanism to create higher-level summaries of past events. One approach to self-reflection involves prompting the language model with the 100 most recent observations and asking it to generate the 3 most salient high-level questions based on those observations. This process helps the AI agent optimize believability in the current moment and over time."

Congratulazioni! Avete costruito una catena RAG di base con Milvus e LangChain.

Filtraggio dei metadati

Possiamo usare le regole di filtraggio scalare di Milvus per filtrare i documenti in base ai metadati. Abbiamo caricato i documenti da due fonti diverse e possiamo filtrare i documenti in base ai metadati source.

vectorstore.similarity_search(
    "What is CoT?",
    k=1,
    expr="source == 'https://lilianweng.github.io/posts/2023-06-23-agent/'",
)

# The same as:
# vectorstore.as_retriever(search_kwargs=dict(
#     k=1,
#     expr="source == 'https://lilianweng.github.io/posts/2023-06-23-agent/'",
# )).invoke("What is CoT?")
[Document(page_content='Fig. 1. Overview of a LLM-powered autonomous agent system.\nComponent One: Planning#\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\nTask Decomposition#\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\nTask decomposition can be done (1) by LLM with simple prompting like "Steps for XYZ.\\n1.", "What are the subgoals for achieving XYZ?", (2) by using task-specific instructions; e.g. "Write a story outline." for writing a novel, or (3) with human inputs.\nAnother quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external classical planner to do long-horizon planning. This approach utilizes the Planning Domain Definition Language (PDDL) as an intermediate interface to describe the planning problem. In this process, LLM (1) translates the problem into “Problem PDDL”, then (2) requests a classical planner to generate a PDDL plan based on an existing “Domain PDDL”, and finally (3) translates the PDDL plan back into natural language. Essentially, the planning step is outsourced to an external tool, assuming the availability of domain-specific PDDL and a suitable planner which is common in certain robotic setups but not in many other domains.\nSelf-Reflection#', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'pk': 449281835035555858})]

Se vogliamo cambiare dinamicamente i parametri di ricerca senza ricostruire la catena, possiamo configurare i parametri interni della catena di runtime. Definiamo un nuovo retriever con questa configurazione dinamica e usiamolo per costruire una nuova catena RAG.

from langchain_core.runnables import ConfigurableField

# Define a new retriever with a configurable field for search_kwargs
retriever2 = vectorstore.as_retriever().configurable_fields(
    search_kwargs=ConfigurableField(
        id="retriever_search_kwargs",
    )
)

# Invoke the retriever with a specific search_kwargs which filter the documents by source
retriever2.with_config(
    configurable={
        "retriever_search_kwargs": dict(
            expr="source == 'https://lilianweng.github.io/posts/2023-06-23-agent/'",
            k=1,
        )
    }
).invoke(query)
[Document(page_content='Self-Reflection#\nSelf-reflection is a vital aspect that allows autonomous agents to improve iteratively by refining past action decisions and correcting previous mistakes. It plays a crucial role in real-world tasks where trial and error are inevitable.\nReAct (Yao et al. 2023) integrates reasoning and acting within LLM by extending the action space to be a combination of task-specific discrete actions and the language space. The former enables LLM to interact with the environment (e.g. use Wikipedia search API), while the latter prompting LLM to generate reasoning traces in natural language.\nThe ReAct prompt template incorporates explicit steps for LLM to think, roughly formatted as:\nThought: ...\nAction: ...\nObservation: ...\n... (Repeated many times)', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'pk': 449281835035555859})]
# Define a new RAG chain with this dynamically configurable retriever
rag_chain2 = (
    {"context": retriever2 | format_docs, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
)

Proviamo questa catena RAG configurabile dinamicamente con diverse condizioni di filtro.

# Invoke this RAG chain with a specific question and config
rag_chain2.with_config(
    configurable={
        "retriever_search_kwargs": dict(
            expr="source == 'https://lilianweng.github.io/posts/2023-06-23-agent/'",
        )
    }
).invoke(query)
"Self-reflection of an AI agent involves the process of synthesizing memories into higher-level inferences over time to guide the agent's future behavior. It serves as a mechanism to create higher-level summaries of past events. One approach to self-reflection involves prompting the language model with the 100 most recent observations and asking it to generate the 3 most salient high-level questions based on those observations. This process helps the AI agent optimize believability in the current moment and over time."

Quando cambiamo la condizione di ricerca per filtrare i documenti dalla seconda fonte, poiché il contenuto di questa fonte blog non ha nulla a che fare con la domanda, otteniamo una risposta senza informazioni rilevanti.

rag_chain2.with_config(
    configurable={
        "retriever_search_kwargs": dict(
            expr="source == 'https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/'",
        )
    }
).invoke(query)
"I'm sorry, but based on the provided context, there is no specific information or statistical data available regarding the self-reflection of an AI agent."

Questo tutorial si concentra sull'uso di base dell'integrazione di Milvus LangChain e su un semplice approccio RAG. Per tecniche di RAG più avanzate, si rimanda al bootcamp di rag avanzato.

Tradotto daDeepLogo

Feedback

Questa pagina è stata utile?