milvus-logo
LFAI
Home
  • User Guide

Conduct a Vector Similarity Search

This topic describes how to search entities with Milvus.

A vector similarity search in Milvus calculates the distance between query vector(s) and vectors in the collection with specified similarity metrics, and returns the most similar results. By specifying a boolean expression that filters the scalar field or the primary key field, you can perform a hybrid search or even a search with Time Travel.

The following example shows how to perform a vector similarity search on a 2000-row dataset of book ID (primary key), word count (scalar field), and book introduction (vector field), simulating the situation that you search for certain books based on their vectorized introductions. Milvus will return the most similar results according to the query vector and search parameters you have defined.

Load collection

All search and query operations within Milvus are executed in memory. Load the collection to memory before conducting a vector similarity search.

from pymilvus import Collection
collection = Collection("book")      # Get an existing collection.
collection.load()
await milvusClient.collectionManager.loadCollection({
  collection_name: "book",
});
err := milvusClient.LoadCollection(
  context.Background(),   // ctx
  "book",                 // CollectionName
  false                   // async
)
if err != nil {
  log.Fatal("failed to load collection:", err.Error())
}
milvusClient.loadCollection(
  LoadCollectionParam.newBuilder()
          .withCollectionName("book")
          .build()
);
load -c book
curl -X 'POST' \
  'http://localhost:9091/api/v1/collection/load' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
    "collection_name": "book"
  }'

Prepare search parameters

Prepare the parameters that suit your search scenario. The following example defines that the search will calculate the distance with Euclidean distance, and retrieve vectors from ten closest clusters built by the IVF_FLAT index.

search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
const searchParams = {
  anns_field: "book_intro",
  topk: "2",
  metric_type: "L2",
  params: JSON.stringify({ nprobe: 10 }),
};
sp, _ := entity.NewIndexFlatSearchParam( // NewIndex*SearchParam func
    10,                                  // searchParam
)
final Integer SEARCH_K = 2;                       // TopK
final String SEARCH_PARAM = "{\"nprobe\":10}";    // Params
search

Collection name (book): book

The vectors of search data(the length of data is number of query (nq), the dim of every vector in data must be equal to vector field’s of collection. You can also import a csv file without headers): [[0.1, 0.2]]

The vector field used to search of collection (book_intro): book_intro

Metric type: L2

Search parameter nprobe's value: 10

The max number of returned record, also known as topk: 10

The boolean expression used to filter attribute []: 

The names of partitions to search (split by "," if multiple) ['_default'] []: 

timeout []:

Guarantee Timestamp(It instructs Milvus to see all operations performed before a provided timestamp. If no such timestamp is provided, then Milvus will search all operations performed to date) [0]: 

Travel Timestamp(Specify a timestamp in a search to get results based on a data view) [0]:
curl -X 'POST' \
  'http://localhost:9091/api/v1/search' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
    "collection_name": "book",
    "output_fields": ["book_id"],
    "search_params": [
      {"key": "anns_field", "value": "book_intro"},
      {"key": "topk", "value": "2"},
      {"key": "params", "value": "{\"nprobe\": 10}"},
      {"key": "metric_type", "value": "L2"},
      {"key": "round_decimal", "value": "-1"}
    ],
    "vectors": [ [0.1,0.2] ],
    "dsl_type": 1
  }'
Output:
{
  "status":{},
  "results":{
    "num_queries":1,
    "top_k":2,
    "fields_data":[
      {
        "type":5,
        "field_name":"book_id",
        "Field":{"Scalars":{"Data":{"LongData":{"data":[1,2]}}}},
        "field_id":100
      }
    ],
    "scores":[1.45,4.25],
    "ids":{"IdField":{"IntId":{"data":[1,2]}}},
    "topks":[2]},
    "collection_name":"book"
}
Parameter Description
metric_type Metrics used to measure similarity of vectors. See Simlarity Metrics for more information.
params Search parameter(s) specific to the index. See Vector Index for more information.
Parameter Description
anns_field Name of the field to search on.
topk Number of the most similar results to return.
metric_type Metrics used to measure similarity of vectors. See Simlarity Metrics for more information.
params Search parameter(s) specific to the index. See Vector Index for more information.
Parameter Description Options
NewIndex*SearchParam func Function to create entity.SearchParam according to different index types. For floating point vectors:
  • NewIndexFlatSearchParam (FLAT)
  • NewIndexIvfFlatSearchParam (IVF_FLAT)
  • NewIndexIvfSQ8SearchParam (IVF_SQ8)
  • NewIndexIvfPQSearchParam (RNSG)
  • NewIndexRNSGSearchParam (HNSW)
  • NewIndexHNSWSearchParam (HNSW)
  • NewIndexANNOYSearchParam (ANNOY)
  • NewIndexRHNSWFlatSearchParam (RHNSW_FLAT)
  • NewIndexRHNSW_PQSearchParam (RHNSW_PQ)
  • NewIndexRHNSW_SQSearchParam (RHNSW_SQ)
For binary vectors:
  • NewIndexBinFlatSearchParam (BIN_FLAT)
  • NewIndexBinIvfFlatSearchParam (BIN_IVF_FLAT)
searchParam Search parameter(s) specific to the index. See Vector Index for more information.
Parameter Description Options
TopK Number of the most similar results to return. N/A
Params Search parameter(s) specific to the index. See Vector Index for more information.
Option Full name Description
--help n/a Displays help for using the command.
Parameter Description
output_fields(optional) Name of the field to return. Vector field is not supported in current release.
anns_field Name of the field to search on.
topk Number of the most similar results to return.
params Search parameter(s) specific to the index. See Vector Index for more information.
metric_type Metrics used to measure similarity of vectors. See Simlarity Metrics for more information.
round_decimal (optional) Number of decimal places of returned distance.
Vectors Vectors to search with.
dsl_type Type of dsl (Data Search Language) field:
0: "Dsl"
1: "BoolExprV1"

Search vectors with Milvus. To search in a specific partition, specify the list of partition names.

Milvus supports setting consistency level specifically for a search. The example in this topic sets the consistency level as Strong. You can also set the consistency level as Bounded, Session or Eventually. See Consistency for more information about the four consistency levels in Milvus.

results = collection.search(
    data=[[0.1, 0.2]], 
    anns_field="book_intro", 
    param=search_params, 
    limit=10, 
    expr=None,
    consistency_level="Strong"
)
const results = await milvusClient.dataManager.search({
  collection_name: "book",
  expr: "",
  vectors: [[0.1, 0.2]],
  search_params: searchParams,
  vector_type: 101,    // DataType.FloatVector
});
searchResult, err := milvusClient.Search(
    context.Background(),                    // ctx
    "book",                                  // CollectionName
    []string{},                              // partitionNames
    "",                                      // expr
    []string{"book_id"},                     // outputFields
    []entity.Vector{entity.FloatVector([]float32{0.1, 0.2})}, // vectors
    "book_intro",                            // vectorField
    entity.L2,                               // metricType
    2,                                       // topK
    sp,                                      // sp
)
if err != nil {
    log.Fatal("fail to search collection:", err.Error())
}
List<String> search_output_fields = Arrays.asList("book_id");
List<List<Float>> search_vectors = Arrays.asList(Arrays.asList(0.1f, 0.2f));

SearchParam searchParam = SearchParam.newBuilder()
        .withCollectionName("book")
        .withConsistencyLevel(ConsistencyLevelEnum.STRONG)
        .withMetricType(MetricType.L2)
        .withOutFields(search_output_fields)
        .withTopK(SEARCH_K)
        .withVectors(search_vectors)
        .withVectorFieldName("book_intro")
        .withParams(SEARCH_PARAM)
        .build();
R<SearchResults> respSearch = milvusClient.search(searchParam);
# Follow the previous step.
# Follow the previous step.
Parameter Description
data Vectors to search with.
anns_field Name of the field to search on.
param Search parameter(s) specific to the index. See Vector Index for more information.
limit Number of the most similar results to return.
expr Boolean expression used to filter attribute. See Boolean Expression Rules for more information.
partition_names (optional) List of names of the partition to search in.
output_fields (optional) Name of the field to return. Vector field is not supported in current release.
timeout (optional) A duration of time in seconds to allow for RPC. Clients wait until server responds or error occurs when it is set to None.
round_decimal (optional) Number of decimal places of returned distance.
consistency_level (optional) Consistency level of the search.
Parameter Description
collection_name Name of the collection to search in.
search_params Parameters (as an object) used for search.
vectors Vectors to search with.
vector_type Pre-check of binary or float vectors. 100 for binary vectors and 101 for float vectors.
partition_names (optional) List of names of the partition to search in.
expr (optional) Boolean expression used to filter attribute. See Boolean Expression Rules for more information.
output_fields (optional) Name of the field to return. Vector field is not supported in current release.
Parameter Description Options
ctx Context to control API invocation process. N/A
CollectionName Name of the collection to load. N/A
partitionNames List of names of the partitions to load. All partitions will be searched if it is left empty. N/A
expr Boolean expression used to filter attribute. See Boolean Expression Rules for more information.
output_fields Name of the field to return. Vector field is not supported in current release.
vectors Vectors to search with. N/A
vectorField Name of the field to search on. N/A
metricType Metric type used for search. This parameter must be set identical to the metric type used for index building.
topK Number of the most similar results to return. N/A
sp entity.SearchParam specific to the index. N/A
Parameter Description Options
CollectionName Name of the collection to load. N/A
MetricType Metric type used for search. This parameter must be set identical to the metric type used for index building.
OutFields Name of the field to return. Vector field is not supported in current release.
Vectors Vectors to search with. N/A
VectorFieldName Name of the field to search on. N/A
Expr Boolean expression used to filter attribute. See Boolean Expression Rules for more information.
ConsistencyLevel The consistency level used in the query. STRONG, BOUNDED, andEVENTUALLY.

Check the primary key values of the most similar vectors and their distances.

results[0].ids
results[0].distances
console.log(results.results)
fmt.Printf("%#v\n", searchResult)
for _, sr := range searchResult {
    fmt.Println(sr.IDs)
    fmt.Println(sr.Scores)
}
SearchResultsWrapper wrapperSearch = new SearchResultsWrapper(respSearch.getData().getResults());
System.out.println(wrapperSearch.getIDScore(0));
System.out.println(wrapperSearch.getFieldData("book_id", 0));
# Milvus CLI automatically returns the primary key values of the most similar vectors and their distances.

Release the collection loaded in Milvus to reduce memory consumption when the search is completed.

collection.release()
await milvusClient.collectionManager.releaseCollection({  collection_name: "book",});
err := milvusClient.ReleaseCollection(
    context.Background(),                            // ctx
    "book",                                          // CollectionName
)
if err != nil {
    log.Fatal("failed to release collection:", err.Error())
}
milvusClient.releaseCollection(
        ReleaseCollectionParam.newBuilder()
                .withCollectionName("book")
                .build());
release -c book
curl -X 'DELETE' \
  'http://localhost:9091/api/v1/collection/load' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
    "collection_name": "book"
  }'

Limits

FeatureMaximum limit
Length of a collection name255 characters
Number of partitions in a collection4,096
Number of fields in a collection256
Number of shards in a collection256
Dimensions of a vector32,768
Top K16,384
Target input vectors16,384

What’s next

Feedback

Was this page helpful?