Schema
This topic introduces schema in Milvus. Schema is used to define the properties of a collection and the fields within.
Field schema
A field schema is the logical definition of a field. It is the first thing you need to define before defining a collection schema and creating a collection.
Milvus 2.0 supports only one primary key field in a collection.
Field schema properties
Properties | Description | Note |
---|---|---|
name | Name of the field in the collection to create | Data type: String. Mandatory |
dtype | Data type of the field | Mandatory |
description | Description of the field | Data type: String. Optional |
is_primary | Whether to set the field as the primary key field or not | Data type: Boolean (true or false ).Mandatory for the primary key field |
dim | Dimension of the vector | Data type: Integer ∈[1, 32768]. Mandatory for the vector field |
Create a field schema
from pymilvus import FieldSchema
id_field = FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, description="primary id")
age_field = FieldSchema(name="age", dtype=DataType.INT64, description="age")
embedding_field = FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=128, description="vector")
Supported data type
DataType
defines the kind of data a field contains. Different fields support different data types.
- Primary key field supports:
- INT64: numpy.int64
- Scalar field supports:
- BOOL: Boolean (
true
orfalse
) - INT8: numpy.int8
- INT16: numpy.int16
- INT32: numpy.int32
- INT64: numpy.int64
- FLOAT: numpy.float32
- DOUBLE: numpy.double
- BOOL: Boolean (
- Vector field supports:
- BINARY_VECTOR: Binary vector
- FLOAT_VECTOR: Float vector
Collection schema
A collection schema is the logical definition of a collection. Usually you need to define the field schema before defining a collection schema and creating a collection.
Collection schema properties
Properties | Description | Note |
---|---|---|
field | Fields in the collection to create | Mandatory |
description | Description of the collection | Data type: String. Optional |
auto_id | Whether to enable Automatic ID (primary key) allocation or not | Data type: Boolean (true or false ).Optional |
Create a collection schema
from pymilvus import FieldSchema, CollectionSchema
id_field = FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, description="primary id")
age_field = FieldSchema(name="age", dtype=DataType.INT64, description="age")
embedding_field = FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=128, description="vector")
schema = CollectionSchema(fields=[id_field, age_field, embedding_field], auto_id=False, description="desc of a collection")
Create a collection with the schema specified:
from pymilvus import Collection
collection_name1 = "tutorial_1"
collection1 = Collection(name=collection_name1, schema=schema, using='default', shards_num=2)
shards_num
and in which Milvus server you wish to create a collection by specifying the alias in using
.
You can also create a collection with Collection.construct_from_dataframe
, which automatically generates a collection schema from DataFrame and creates a collection.
import pandas as pd
df = pd.DataFrame({
"id": [i for i in range(nb)],
"age": [random.randint(20, 40) for i in range(nb)],
"embedding": [[random.random() for _ in range(dim)] for _ in range(nb)]
})
collection, ins_res = Collection.construct_from_dataframe(
'my_collection',
df,
primary_field='id',
auto_id=False
)