milvus-logo
LFAI
Home

Exécuter Milvus avec Python

Ce topic décrit comment exécuter Milvus avec Python.

1. Installer PyMilvus

pip3 install pymilvus==2.0.x
Il est nécessaire d'utiliser la version 3.6 ou une version plus récente de Python. Plus d'informations sont disponibles dans le guide d'installation de Python.

2. Télécharger un exemple code source

$ wget https://raw.githubusercontent.com/milvus-io/pymilvus/v2.0.x/examples/hello_milvus.py

3. Scanner le code source

L’exemple fourni exécute les étapes suivantes.

  • Import du package PyMilvus :
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection
  • Connexion à un serveur :
connections.connect(host='localhost', port='19530')
  • Création d’une collection :
dim = 128
default_fields = [
    FieldSchema(name="count", dtype=DataType.INT64, is_primary=True),
    FieldSchema(name="random_value", dtype=DataType.DOUBLE),
    FieldSchema(name="float_vector", dtype=DataType.FLOAT_VECTOR, dim=dim)
]
default_schema = CollectionSchema(fields=default_fields, description="test collection")

print(f"\nCreate collection...")
collection = Collection(name="hello_milvus", schema=default_schema)
  • Insertion des vecteurs dans la collection :
import random
nb = 3000
vectors = [[random.random() for _ in range(dim)] for _ in range(nb)]
collection.insert(
    [
        [i for i in range(nb)],
        [float(random.randrange(-20,-10)) for _ in range(nb)],
        vectors
    ]
)
  • Construction des index et chargement de la collection en mémoire :
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
collection.create_index(field_name="float_vector", index_params=default_index)
collection.load()
  • Exécute une recherche de similitude entre vecteurs :
topK = 5
search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
# define output_fields of search result
res = collection.search(
    vectors[-2:], "float_vector", search_params, topK,
    "count > 100", output_fields=["count", "random_value"]
)

Pour afficher les résultats classés par ID et distance, exécutez la commande suivante.

for raw_result in res:
    for result in raw_result:
        id = result.id  # result id
        distance = result.distance
        print(id, distance)

Se référer à la documentation de l’API pour plus d’informations.

  • Exécute une recherche hybride :
L'exemple suivant fait une recherche approximative sur entités où la variable film_id prend les valeurs [2,4,6,8].
from pymilvus import connections, Collection, FieldSchema, CollectionSchema, DataType
import random
connections.connect()
schema = CollectionSchema([
    FieldSchema("film_id", DataType.INT64, is_primary=True),
    FieldSchema("films", dtype=DataType.FLOAT_VECTOR, dim=2)
])
collection = Collection("test_collection_search", schema)
# insert
data = [
    [i for i in range(10)],
    [[random.random() for _ in range(2)] for _ in range(10)],
]
collection.insert(data)
collection.num_entities
10
collection.load()
# search
search_param = {
    "data": [[1.0, 1.0]],
    "anns_field": "films",
    "param": {"metric_type": "L2"},
    "limit": 2,
    "expr": "film_id in [2,4,6,8]",
}
res = collection.search(**search_param)
assert len(res) == 1
hits = res[0]
assert len(hits) == 2
print(f"- Total hits: {len(hits)}, hits ids: {hits.ids} ")
- Total hits: 2, hits ids: [2, 4]
print(f"- Top1 hit id: {hits[0].id}, distance: {hits[0].distance}, score: {hits[0].score} ")
- Top1 hit id: 2, distance: 0.10143111646175385, score: 0.101431116461

4. Exécuter le code source

$ python3 hello_milvus.py

Les résultats ainsi que le temps de latence des requêtes sont affichés de cette manière :

Search...

(distance: 0.0, id: 2998) -20.0

(distance: 13.2614107131958, id: 989) -11.0

(distance: 14.489648818969727, id: 1763) -19.0

(distance: 15.295698165893555, id: 968) -20.0

(distance: 15.34445571899414, id: 2049) -19.0

(distance: 0.0, id: 2999) -12.0

(distance: 14.63361930847168, id: 1259) -13.0

(distance: 15.421361923217773, id: 2530) -15.0

(distance: 15.427900314331055, id: 600) -14.0

(distance: 15.538337707519531, id: 637) -19.0

search latency = 0.0549s


Félicitations ! Vous avez démarré Milvus standalone et exécuté votre première recherche de similitude entre vecteurs.