milvus-logo
LFAI
Home
  • Get Started

Run Milvus using Python

This topic describes how to run Milvus using Python.

Through running the example code we provided, you will have a primary understanding of what Milvus is capable of.

Preparations

Download example code

Download hello_milvus.py directly or with the following command.

$ wget https://raw.githubusercontent.com/milvus-io/pymilvus/v2.0.x/examples/hello_milvus.py

Scan the example code

The example code performs the following steps.

  • Imports a PyMilvus package:
from pymilvus import (
    connections,
    utility,
    FieldSchema,
    CollectionSchema,
    DataType,
    Collection,
)
  • Connects to a server:
connections.connect("default", host="localhost", port="19530")
  • Creates a collection:
fields = [
    FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id=False),
    FieldSchema(name="random", dtype=DataType.DOUBLE),
    FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=8)
]
schema = CollectionSchema(fields, "hello_milvus is the simplest demo to introduce the APIs")
hello_milvus = Collection("hello_milvus", schema)
  • Inserts vectors in the collection:
import random
entities = [
    [i for i in range(3000)],  # field pk
    [float(random.randrange(-20, -10)) for _ in range(3000)],  # field random
    [[random.random() for _ in range(8)] for _ in range(3000)],  # field embeddings
]
insert_result = hello_milvus.insert(entities)
  • Builds indexes on the entities:
index = {
    "index_type": "IVF_FLAT",
    "metric_type": "L2",
    "params": {"nlist": 128},
}
hello_milvus.create_index("embeddings", index)
  • Loads the collection to memory and performs a vector similarity search:
hello_milvus.load()
vectors_to_search = entities[-1][-2:]
search_params = {
    "metric_type": "L2",
    "params": {"nprobe": 10},
}
result = hello_milvus.search(vectors_to_search, "embeddings", search_params, limit=3, output_fields=["random"])
  • Performs a vector query:
result = hello_milvus.query(expr="random > -14", output_fields=["random", "embeddings"])
  • Performs a hybrid search:
result = hello_milvus.search(vectors_to_search, "embeddings", search_params, limit=3, expr="random > -12", output_fields=["random"])
  • Deletes entities by their primary keys:
expr = f"pk in [{ids[0]}, {ids[1]}]"
hello_milvus.delete(expr)
  • Drops the collection:
utility.drop_collection("hello_milvus")

Run the example code

Execute the following command to run the example code.

$ python3 hello_milvus.py

The returned results and query latency are shown as follows:

=== start connecting to Milvus     ===

Does collection hello_milvus exist in Milvus: False

=== Create collection `hello_milvus` ===


=== Start inserting entities       ===

Number of entities in Milvus: 3000

=== Start Creating index IVF_FLAT  ===


=== Start loading                  ===


=== Start searching based on vector similarity ===

hit: (distance: 0.0, id: 2998), random field: -11.0
hit: (distance: 0.11455299705266953, id: 1581), random field: -18.0
hit: (distance: 0.1232629269361496, id: 2647), random field: -13.0
hit: (distance: 0.0, id: 2999), random field: -11.0
hit: (distance: 0.10560893267393112, id: 2430), random field: -18.0
hit: (distance: 0.13938161730766296, id: 377), random field: -14.0
search latency = 0.2796s

=== Start querying with `random > -14` ===

query result:
-{'pk': 9, 'random': -13.0, 'embeddings': [0.298433, 0.931987, 0.949756, 0.598713, 0.290125, 0.094323, 0.064444, 0.306993]}
search latency = 0.2970s

=== Start hybrid searching with `random > -12` ===

hit: (distance: 0.0, id: 2998), random field: -11.0
hit: (distance: 0.15773043036460876, id: 472), random field: -11.0
hit: (distance: 0.3273330628871918, id: 2146), random field: -11.0
hit: (distance: 0.0, id: 2999), random field: -11.0
hit: (distance: 0.15844076871871948, id: 2218), random field: -11.0
hit: (distance: 0.1622171700000763, id: 1403), random field: -11.0
search latency = 0.3028s

=== Start deleting with expr `pk in [0, 1]` ===

query before delete by expr=`pk in [0, 1]` -> result: 
-{'pk': 0, 'random': -18.0, 'embeddings': [0.142279, 0.414248, 0.378628, 0.971863, 0.535941, 0.107011, 0.207052, 0.98182]}
-{'pk': 1, 'random': -15.0, 'embeddings': [0.57512, 0.358512, 0.439131, 0.862369, 0.083284, 0.294493, 0.004961, 0.180082]}

query after delete by expr=`pk in [0, 1]` -> result: []


=== Drop collection `hello_milvus` ===


Congratulations! You have started Milvus standalone and performed your first vector similarity search.

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

Was this page helpful?