🚀 Try Zilliz Cloud, the fully managed Milvus, for free—experience 10x faster performance! Try Now>>

Milvus
Zilliz
Home
  • User Guide
  • Home
  • Docs
  • User Guide

  • Embeddings & Reranking

  • Reranking Function

  • Decay Ranker

  • Tutorial: Implement Time-based Ranking in Milvus

Tutorial: Implement Time-based Ranking in MilvusCompatible with Milvus 2.6.x

In many search applications, the freshness of content is just as important as its relevance. News articles, product listings, social media posts, and research papers all benefit from ranking systems that balance semantic relevance with recency. This tutorial demonstrates how to implement time-based ranking in Milvus using decay rankers.

Understand decay rankers in Milvus

Decay rankers allow you to boost or penalize documents based on numeric values (like timestamps) relative to a reference point. For time-based ranking, this means newer documents can receive higher scores than older ones, even when their semantic relevance is similar.

Milvus supports three types of decay rankers:

  • Gaussian (gauss): A bell-shaped curve providing smooth, gradual decay

  • Exponential (exp): Creates a sharper initial drop-off for strongly emphasizing recent content

  • Linear (linear): A straight-line decay that is predictable and easy to understand

Each ranker has different characteristics that make them suitable for various use cases. For more information, refer to Decay Ranker Overview.

Build a time-aware search system

We’ll create a news article search system that demonstrates how to effectively rank content based on both relevance and time. Let’s start with the implementation:

import datetime
import matplotlib.pyplot as plt
import numpy as np
from pymilvus import (
    MilvusClient,
    DataType,
    Function,
    FunctionType,
    AnnSearchRequest,
)

# Create connection to Milvus
milvus_client = MilvusClient("http://localhost:19530")

# Define collection name
collection_name = "news_articles_tutorial"

# Clean up any existing collection with the same name
milvus_client.drop_collection(collection_name)

Step 1: Design the schema

For time-based search, we need to store the publication timestamp along with the content:

# Create schema with fields for content and temporal information
schema = milvus_client.create_schema(enable_dynamic_field=False, auto_id=True)
schema.add_field("id", DataType.INT64, is_primary=True)
schema.add_field("headline", DataType.VARCHAR, max_length=200, enable_analyzer=True)
schema.add_field("content", DataType.VARCHAR, max_length=2000, enable_analyzer=True)
schema.add_field("dense", DataType.FLOAT_VECTOR, dim=1024)  # For dense embeddings
schema.add_field("sparse_vector", DataType.SPARSE_FLOAT_VECTOR)  # For sparse (BM25) search
schema.add_field("publish_date", DataType.INT64)  # Timestamp for decay ranking

Step 2: Set up embedding functions

We’ll configure both dense (semantic) and sparse (keyword) embedding functions:

# Create embedding function for semantic search
text_embedding_function = Function(
    name="siliconflow_embedding",
    function_type=FunctionType.TEXTEMBEDDING,
    input_field_names=["content"],
    output_field_names=["dense"],
    params={
        "provider": "siliconflow",
        "model_name": "BAAI/bge-large-en-v1.5",
        "credential": "your-api-key"
    }
)
schema.add_function(text_embedding_function)

# Create BM25 function for keyword search
bm25_function = Function(
    name="bm25",
    input_field_names=["content"],
    output_field_names=["sparse_vector"],
    function_type=FunctionType.BM25,
)
schema.add_function(bm25_function)

For details on how to use Milvus embedding functions, refer to Embedding Function Overview.

Step 3: Configure index parameters

Let’s set up the appropriate index parameters for fast vector search:

# Set up indexes for fast search
index_params = milvus_client.prepare_index_params()

# Dense vector index
index_params.add_index(field_name="dense", index_type="AUTOINDEX", metric_type="L2")

# Sparse vector index
index_params.add_index(
    field_name="sparse_vector",
    index_name="sparse_inverted_index",
    index_type="AUTOINDEX",
    metric_type="BM25",
)

# Create the collection with our schema and indexes
milvus_client.create_collection(
    collection_name,
    schema=schema,
    index_params=index_params,
    consistency_level="Strong"
)

Step 4: Prepare sample data

For this tutorial, we’ll create a set of news articles with different publication dates. Notice how we’ve included pairs of articles with nearly identical content but different dates to clearly demonstrate the decay ranking effect:

# Get current time
current_time = int(datetime.datetime.now().timestamp())
current_date = datetime.datetime.fromtimestamp(current_time)
print(f"Current time: {current_date.strftime('%Y-%m-%d %H:%M:%S')}")

# Sample news articles spanning different dates
articles = [
    {
        "headline": "AI Breakthrough Enables Medical Diagnosis Advancement",
        "content": "Researchers announced a major breakthrough in AI-based medical diagnostics, enabling faster and more accurate detection of rare diseases.",
        "publish_date": int((current_date - datetime.timedelta(days=120)).timestamp())  # ~4 months ago
    },
    {
        "headline": "Tech Giants Compete in New AI Race",
        "content": "Major technology companies are investing billions in a new race to develop the most advanced artificial intelligence systems.",
        "publish_date": int((current_date - datetime.timedelta(days=60)).timestamp())  # ~2 months ago
    },
    {
        "headline": "AI Ethics Guidelines Released by International Body",
        "content": "A consortium of international organizations has released new guidelines addressing ethical concerns in artificial intelligence development and deployment.",
        "publish_date": int((current_date - datetime.timedelta(days=30)).timestamp())  # 1 month ago
    },
    {
        "headline": "Latest Deep Learning Models Show Remarkable Progress",
        "content": "The newest generation of deep learning models demonstrates unprecedented capabilities in language understanding and generation.",
        "publish_date": int((current_date - datetime.timedelta(days=15)).timestamp())  # 15 days ago
    },
    # Articles with identical content but different dates
    {
        "headline": "AI Research Advancements Published in January",
        "content": "Breakthrough research in artificial intelligence shows remarkable advancements in multiple domains.",
        "publish_date": int((current_date - datetime.timedelta(days=90)).timestamp())  # ~3 months ago
    },
    {
        "headline": "New AI Research Results Released This Week",
        "content": "Breakthrough research in artificial intelligence shows remarkable advancements in multiple domains.",
        "publish_date": int((current_date - datetime.timedelta(days=5)).timestamp())  # Very recent - 5 days ago
    },
    {
        "headline": "AI Development Updates Released Yesterday",
        "content": "Recent developments in artificial intelligence research are showing promising results across various applications.",
        "publish_date": int((current_date - datetime.timedelta(days=1)).timestamp())  # Just yesterday
    },
]

# Insert articles into the collection
milvus_client.insert(collection_name, articles)
print(f"Inserted {len(articles)} articles into the collection")

Step 5: Configure different decay rankers

Now let’s create three different decay rankers, each with distinct parameters to highlight their differences:

# Use current time as reference point
print(f"Using current time as reference point")

# Create a Gaussian decay ranker
gaussian_ranker = Function(
    name="time_decay_gaussian",
    input_field_names=["publish_date"],
    function_type=FunctionType.RERANK,
    params={
        "reranker": "decay",
        "function": "gauss",           # Gaussian/bell curve decay
        "origin": current_time,        # Current time as reference point
        "offset": 7 * 24 * 60 * 60,    # One week (full relevance)
        "decay": 0.5,                  # Articles from two weeks ago have half relevance 
        "scale": 14 * 24 * 60 * 60     # Two weeks scale parameter
    }
)

# Create an exponential decay ranker with different parameters
exponential_ranker = Function(
    name="time_decay_exponential",
    input_field_names=["publish_date"],
    function_type=FunctionType.RERANK,
    params={
        "reranker": "decay",
        "function": "exp",             # Exponential decay
        "origin": current_time,        # Current time as reference point
        "offset": 3 * 24 * 60 * 60,    # Shorter offset (3 days vs 7 days)
        "decay": 0.3,                  # Steeper decay (0.3 vs 0.5) 
        "scale": 10 * 24 * 60 * 60     # Different scale (10 days vs 14 days)
    }
)

# Create a linear decay ranker
linear_ranker = Function(
    name="time_decay_linear",
    input_field_names=["publish_date"],
    function_type=FunctionType.RERANK,
    params={
        "reranker": "decay",
        "function": "linear",          # Linear decay
        "origin": current_time,        # Current time as reference point
        "offset": 7 * 24 * 60 * 60,    # One week (full relevance)
        "decay": 0.5,                  # Articles from two weeks ago have half relevance
        "scale": 14 * 24 * 60 * 60     # Two weeks scale parameter
    }
)

In the preceding code:

  • reranker: Set to decay for time-based decay functions

  • function: The type of decay function (gauss, exp, or linear)

  • origin: The reference point (usually current time)

  • offset: The period during which documents maintain full relevance

  • scale: Controls how quickly relevance decreases beyond the offset

  • decay: The decay factor at offset+scale (e.g., 0.5 means half relevance)

Notice that we’ve configured the exponential ranker with different parameters to demonstrate how you can tune these functions for different behaviors.

Step 6: Visualize the decay rankers

Before performing searches, let’s create a visual comparison of how these differently configured decay rankers behave:

# Visualize the decay functions with different parameters
days = np.linspace(0, 90, 100)
# Gaussian: offset=7, scale=14, decay=0.5
gaussian_values = [1.0 if d <= 7 else (0.5 ** ((d - 7) / 14)) for d in days]
# Exponential: offset=3, scale=10, decay=0.3
exponential_values = [1.0 if d <= 3 else (0.3 ** ((d - 3) / 10)) for d in days]
# Linear: offset=7, scale=14, decay=0.5
linear_values = [1.0 if d <= 7 else max(0, 1.0 - ((d - 7) / 14) * 0.5) for d in days]

plt.figure(figsize=(10, 6))
plt.plot(days, gaussian_values, label='Gaussian (offset=7, scale=14, decay=0.5)')
plt.plot(days, exponential_values, label='Exponential (offset=3, scale=10, decay=0.3)')
plt.plot(days, linear_values, label='Linear (offset=7, scale=14, decay=0.5)')
plt.axhline(y=0.5, color='gray', linestyle='--', alpha=0.5, label='Half relevance')
plt.xlabel('Days ago')
plt.ylabel('Relevance factor')
plt.title('Decay Functions Comparison')
plt.legend()
plt.grid(True)
plt.savefig('decay_functions.png')
plt.close()

# Print numerical representation
print("\n=== TIME DECAY EFFECT VISUALIZATION ===")
print("Days ago | Gaussian | Exponential | Linear")
print("-----------------------------------------")
for days in [0, 3, 7, 10, 14, 21, 30, 60, 90]:
    # Calculate decay factors based on the parameters in our rankers
    gaussian_decay = 1.0 if days <= 7 else (0.5 ** ((days - 7) / 14))
    exponential_decay = 1.0 if days <= 3 else (0.3 ** ((days - 3) / 10))
    linear_decay = 1.0 if days <= 7 else max(0, 1.0 - ((days - 7) / 14) * 0.5)
    
    print(f"{days:2d} days | {gaussian_decay:.4f}   | {exponential_decay:.4f}     | {linear_decay:.4f}")

Expected output:

=== TIME DECAY EFFECT VISUALIZATION ===
Days ago | Gaussian | Exponential | Linear
-----------------------------------------
 0 days | 1.0000   | 1.0000     | 1.0000
 3 days | 1.0000   | 1.0000     | 1.0000
 7 days | 1.0000   | 0.6178     | 1.0000
10 days | 0.8620   | 0.4305     | 0.8929
14 days | 0.7071   | 0.2660     | 0.7500
21 days | 0.5000   | 0.1145     | 0.5000
30 days | 0.3202   | 0.0387     | 0.1786
60 days | 0.0725   | 0.0010     | 0.0000
90 days | 0.0164   | 0.0000     | 0.0000

Step 7: Helper function for results display

# Helper function to format search results with dates and scores
def print_search_results(results, title):
    print(f"\n=== {title} ===")
    for i, hit in enumerate(results[0]):
        publish_date = datetime.datetime.fromtimestamp(hit.get('publish_date'))
        days_from_now = (current_time - hit.get('publish_date')) / (24 * 60 * 60)
        
        print(f"{i+1}. {hit.get('headline')}")
        print(f"   Published: {publish_date.strftime('%Y-%m-%d')} ({int(days_from_now)} days ago)")
        print(f"   Score: {hit.score:.4f}")
        print()

Now let’s run a search query and compare the results with and without decay ranking:

# Define our search query
query = "artificial intelligence advancements"

# 1. Search without decay ranking (purely based on semantic relevance)
standard_results = milvus_client.search(
    collection_name,
    data=[query],
    anns_field="dense",
    limit=7,  # Get all our articles
    output_fields=["headline", "content", "publish_date"],
    consistency_level="Strong"
)
print_search_results(standard_results, "SEARCH RESULTS WITHOUT DECAY RANKING")

# Store original scores for later comparison
original_scores = {}
for hit in standard_results[0]:
    original_scores[hit.get('headline')] = hit.score

# 2. Search with each decay function
# Gaussian decay
gaussian_results = milvus_client.search(
    collection_name,
    data=[query],
    anns_field="dense",
    limit=7,
    output_fields=["headline", "content", "publish_date"],
    ranker=gaussian_ranker,
    consistency_level="Strong"
)
print_search_results(gaussian_results, "SEARCH RESULTS WITH GAUSSIAN DECAY RANKING")

# Exponential decay
exponential_results = milvus_client.search(
    collection_name,
    data=[query],
    anns_field="dense",
    limit=7,
    output_fields=["headline", "content", "publish_date"],
    ranker=exponential_ranker,
    consistency_level="Strong"
)
print_search_results(exponential_results, "SEARCH RESULTS WITH EXPONENTIAL DECAY RANKING")

# Linear decay
linear_results = milvus_client.search(
    collection_name,
    data=[query],
    anns_field="dense",
    limit=7,
    output_fields=["headline", "content", "publish_date"],
    ranker=linear_ranker,
    consistency_level="Strong"
)
print_search_results(linear_results, "SEARCH RESULTS WITH LINEAR DECAY RANKING")

Expected output:

=== SEARCH RESULTS WITHOUT DECAY RANKING ===
1. AI Development Updates Released Yesterday
   Published: 2025-05-14 (1 days ago)
   Score: 0.3670

2. AI Research Advancements Published in January
   Published: 2025-02-14 (90 days ago)
   Score: 0.4315

3. New AI Research Results Released This Week
   Published: 2025-05-10 (5 days ago)
   Score: 0.4316

4. Tech Giants Compete in New AI Race
   Published: 2025-03-16 (60 days ago)
   Score: 0.6671

5. Latest Deep Learning Models Show Remarkable Progress
   Published: 2025-04-30 (15 days ago)
   Score: 0.6674

6. AI Breakthrough Enables Medical Diagnosis Advancement
   Published: 2025-01-15 (120 days ago)
   Score: 0.7279

7. AI Ethics Guidelines Released by International Body
   Published: 2025-04-15 (30 days ago)
   Score: 0.7661

=== SEARCH RESULTS WITH GAUSSIAN DECAY RANKING ===
1. Latest Deep Learning Models Show Remarkable Progress
   Published: 2025-04-30 (15 days ago)
   Score: 0.5322

2. New AI Research Results Released This Week
   Published: 2025-05-10 (5 days ago)
   Score: 0.4316

3. AI Development Updates Released Yesterday
   Published: 2025-05-14 (1 days ago)
   Score: 0.3670

4. AI Ethics Guidelines Released by International Body
   Published: 2025-04-15 (30 days ago)
   Score: 0.1180

5. Tech Giants Compete in New AI Race
   Published: 2025-03-16 (60 days ago)
   Score: 0.0000

6. AI Research Advancements Published in January
   Published: 2025-02-14 (90 days ago)
   Score: 0.0000

7. AI Breakthrough Enables Medical Diagnosis Advancement
   Published: 2025-01-15 (120 days ago)
   Score: 0.0000

=== SEARCH RESULTS WITH EXPONENTIAL DECAY RANKING ===
1. AI Development Updates Released Yesterday
   Published: 2025-05-14 (1 days ago)
   Score: 0.3670

2. New AI Research Results Released This Week
   Published: 2025-05-10 (5 days ago)
   Score: 0.3392

3. Latest Deep Learning Models Show Remarkable Progress
   Published: 2025-04-30 (15 days ago)
   Score: 0.1574

4. AI Ethics Guidelines Released by International Body
   Published: 2025-04-15 (30 days ago)
   Score: 0.0297

5. Tech Giants Compete in New AI Race
   Published: 2025-03-16 (60 days ago)
   Score: 0.0007

6. AI Research Advancements Published in January
   Published: 2025-02-14 (90 days ago)
   Score: 0.0000

7. AI Breakthrough Enables Medical Diagnosis Advancement
   Published: 2025-01-15 (120 days ago)
   Score: 0.0000

=== SEARCH RESULTS WITH LINEAR DECAY RANKING ===
1. Latest Deep Learning Models Show Remarkable Progress
   Published: 2025-04-30 (15 days ago)
   Score: 0.4767

2. New AI Research Results Released This Week
   Published: 2025-05-10 (5 days ago)
   Score: 0.4316

3. AI Ethics Guidelines Released by International Body
   Published: 2025-04-15 (30 days ago)
   Score: 0.3831

4. AI Development Updates Released Yesterday
   Published: 2025-05-14 (1 days ago)
   Score: 0.3670

5. AI Breakthrough Enables Medical Diagnosis Advancement
   Published: 2025-01-15 (120 days ago)
   Score: 0.3640

6. Tech Giants Compete in New AI Race
   Published: 2025-03-16 (60 days ago)
   Score: 0.3335

7. AI Research Advancements Published in January
   Published: 2025-02-14 (90 days ago)
   Score: 0.2158

Step 9: Understand score calculation

Let’s break down how final scores are calculated by combining original relevance with decay factors:

# Add a detailed breakdown for the first 3 results from Gaussian decay
print("\n=== SCORE CALCULATION BREAKDOWN (GAUSSIAN DECAY) ===")
for item in gaussian_results[0][:3]:
    headline = item.get('headline')
    publish_date = datetime.datetime.fromtimestamp(item.get('publish_date'))
    days_ago = (current_time - item.get('publish_date')) / (24 * 60 * 60)
    
    # Get the original score
    original_score = original_scores.get(headline, 0)
    
    # Calculate decay factor
    decay_factor = 1.0 if days_ago <= 7 else (0.5 ** ((days_ago - 7) / 14))
    
    # Show breakdown
    print(f"Item: {headline}")
    print(f"  Published: {publish_date.strftime('%Y-%m-%d')} ({int(days_ago)} days ago)")
    print(f"  Original relevance score: {original_score:.4f}")
    print(f"  Decay factor (Gaussian): {decay_factor:.4f}")
    print(f"  Expected final score = Original Ă— Decay: {original_score * decay_factor:.4f}")
    print(f"  Actual final score: {item.score:.4f}")
    print()

Expected output:

=== SCORE CALCULATION BREAKDOWN (GAUSSIAN DECAY) ===
Item: Latest Deep Learning Models Show Remarkable Progress
  Published: 2025-04-30 (15 days ago)
  Original relevance score: 0.6674
  Decay factor (Gaussian): 0.6730
  Expected final score = Original Ă— Decay: 0.4491
  Actual final score: 0.5322

Item: New AI Research Results Released This Week
  Published: 2025-05-10 (5 days ago)
  Original relevance score: 0.4316
  Decay factor (Gaussian): 1.0000
  Expected final score = Original Ă— Decay: 0.4316
  Actual final score: 0.4316

Item: AI Development Updates Released Yesterday
  Published: 2025-05-14 (1 days ago)
  Original relevance score: 0.3670
  Decay factor (Gaussian): 1.0000
  Expected final score = Original Ă— Decay: 0.3670
  Actual final score: 0.3670

Step 10: Hybrid search with time decay

For more complex scenarios, we can combine dense (semantic) and sparse (keyword) vectors using hybrid search:

# Set up hybrid search (combining dense and sparse vectors)
dense_search = AnnSearchRequest(
    data=[query],
    anns_field="dense",  # Search dense vectors
    param={},
    limit=7
)

sparse_search = AnnSearchRequest(
    data=[query],
    anns_field="sparse_vector",  # Search sparse vectors (BM25)
    param={},
    limit=7
)

# Execute hybrid search with each decay function
# Gaussian decay
hybrid_gaussian_results = milvus_client.hybrid_search(
    collection_name,
    [dense_search, sparse_search],
    ranker=gaussian_ranker,
    limit=7,
    output_fields=["headline", "content", "publish_date"]
)
print_search_results(hybrid_gaussian_results, "HYBRID SEARCH RESULTS WITH GAUSSIAN DECAY RANKING")

# Exponential decay
hybrid_exponential_results = milvus_client.hybrid_search(
    collection_name,
    [dense_search, sparse_search],
    ranker=exponential_ranker,
    limit=7,
    output_fields=["headline", "content", "publish_date"]
)
print_search_results(hybrid_exponential_results, "HYBRID SEARCH RESULTS WITH EXPONENTIAL DECAY RANKING")

Expected output:

=== HYBRID SEARCH RESULTS WITH GAUSSIAN DECAY RANKING ===
1. New AI Research Results Released This Week
   Published: 2025-05-10 (5 days ago)
   Score: 2.1467

2. AI Development Updates Released Yesterday
   Published: 2025-05-14 (1 days ago)
   Score: 0.7926

3. Latest Deep Learning Models Show Remarkable Progress
   Published: 2025-04-30 (15 days ago)
   Score: 0.5322

4. AI Ethics Guidelines Released by International Body
   Published: 2025-04-15 (30 days ago)
   Score: 0.1180

5. Tech Giants Compete in New AI Race
   Published: 2025-03-16 (60 days ago)
   Score: 0.0000

6. AI Research Advancements Published in January
   Published: 2025-02-14 (90 days ago)
   Score: 0.0000

7. AI Breakthrough Enables Medical Diagnosis Advancement
   Published: 2025-01-15 (120 days ago)
   Score: 0.0000

=== HYBRID SEARCH RESULTS WITH EXPONENTIAL DECAY RANKING ===
1. New AI Research Results Released This Week
   Published: 2025-05-10 (5 days ago)
   Score: 1.6873

2. AI Development Updates Released Yesterday
   Published: 2025-05-14 (1 days ago)
   Score: 0.7926

3. Latest Deep Learning Models Show Remarkable Progress
   Published: 2025-04-30 (15 days ago)
   Score: 0.1574

4. AI Ethics Guidelines Released by International Body
   Published: 2025-04-15 (30 days ago)
   Score: 0.0297

5. Tech Giants Compete in New AI Race
   Published: 2025-03-16 (60 days ago)
   Score: 0.0007

6. AI Research Advancements Published in January
   Published: 2025-02-14 (90 days ago)
   Score: 0.0001

7. AI Breakthrough Enables Medical Diagnosis Advancement
   Published: 2025-01-15 (120 days ago)
   Score: 0.0000

Step 11: Experiment with different parameter values

Let’s see how adjusting the scale parameter affects the Gaussian decay function:

# Create variations of the Gaussian decay function with different scale parameters
print("\n=== PARAMETER VARIATION EXPERIMENT: SCALE ===")
for scale_days in [7, 14, 30]:
    scaled_ranker = Function(
        name=f"time_decay_gaussian_{scale_days}",
        input_field_names=["publish_date"],
        function_type=FunctionType.RERANK,
        params={
            "reranker": "decay",
            "function": "gauss",
            "origin": current_time,
            "offset": 7 * 24 * 60 * 60,  # Fixed offset of 7 days
            "decay": 0.5,                # Fixed decay of 0.5
            "scale": scale_days * 24 * 60 * 60  # Variable scale
        }
    )
    
    # Get results
    scale_results = milvus_client.search(
        collection_name,
        data=[query],
        anns_field="dense",
        limit=7,
        output_fields=["headline", "content", "publish_date"],
        ranker=scaled_ranker,
        consistency_level="Strong"
    )
    
    print_search_results(scale_results, f"SEARCH WITH GAUSSIAN DECAY (SCALE = {scale_days} DAYS)")

Expected output:

=== PARAMETER VARIATION EXPERIMENT: SCALE ===

=== SEARCH WITH GAUSSIAN DECAY (SCALE = 7 DAYS) ===
1. New AI Research Results Released This Week
   Published: 2025-05-10 (5 days ago)
   Score: 0.4316

2. AI Development Updates Released Yesterday
   Published: 2025-05-14 (1 days ago)
   Score: 0.3670

3. Latest Deep Learning Models Show Remarkable Progress
   Published: 2025-04-30 (15 days ago)
   Score: 0.2699

4. AI Ethics Guidelines Released by International Body
   Published: 2025-04-15 (30 days ago)
   Score: 0.0004

5. Tech Giants Compete in New AI Race
   Published: 2025-03-16 (60 days ago)
   Score: 0.0000

6. AI Research Advancements Published in January
   Published: 2025-02-14 (90 days ago)
   Score: 0.0000

7. AI Breakthrough Enables Medical Diagnosis Advancement
   Published: 2025-01-15 (120 days ago)
   Score: 0.0000

=== SEARCH WITH GAUSSIAN DECAY (SCALE = 14 DAYS) ===
1. Latest Deep Learning Models Show Remarkable Progress
   Published: 2025-04-30 (15 days ago)
   Score: 0.5322

2. New AI Research Results Released This Week
   Published: 2025-05-10 (5 days ago)
   Score: 0.4316

3. AI Development Updates Released Yesterday
   Published: 2025-05-14 (1 days ago)
   Score: 0.3670

4. AI Ethics Guidelines Released by International Body
   Published: 2025-04-15 (30 days ago)
   Score: 0.1180

5. Tech Giants Compete in New AI Race
   Published: 2025-03-16 (60 days ago)
   Score: 0.0000

6. AI Research Advancements Published in January
   Published: 2025-02-14 (90 days ago)
   Score: 0.0000

7. AI Breakthrough Enables Medical Diagnosis Advancement
   Published: 2025-01-15 (120 days ago)
   Score: 0.0000

=== SEARCH WITH GAUSSIAN DECAY (SCALE = 30 DAYS) ===
1. Latest Deep Learning Models Show Remarkable Progress
   Published: 2025-04-30 (15 days ago)
   Score: 0.6353

2. AI Ethics Guidelines Released by International Body
   Published: 2025-04-15 (30 days ago)
   Score: 0.5097

3. New AI Research Results Released This Week
   Published: 2025-05-10 (5 days ago)
   Score: 0.4316

4. AI Development Updates Released Yesterday
   Published: 2025-05-14 (1 days ago)
   Score: 0.3670

5. Tech Giants Compete in New AI Race
   Published: 2025-03-16 (60 days ago)
   Score: 0.0767

6. AI Research Advancements Published in January
   Published: 2025-02-14 (90 days ago)
   Score: 0.0021

7. AI Breakthrough Enables Medical Diagnosis Advancement
   Published: 2025-01-15 (120 days ago)
   Score: 0.0000

Step 12: Testing with different queries

Let’s see how decay ranking performs with different search queries:

# Try different queries with Gaussian decay
for test_query in ["machine learning", "neural networks", "ethics in AI"]:
    print(f"\n=== TESTING QUERY: '{test_query}' WITH GAUSSIAN DECAY ===")
    test_results = milvus_client.search(
        collection_name,
        data=[test_query],
        anns_field="dense",
        limit=4,
        output_fields=["headline", "content", "publish_date"],
        ranker=gaussian_ranker,
        consistency_level="Strong"
    )
    print_search_results(test_results, f"TOP 4 RESULTS FOR '{test_query}'")

Expected output:

=== TESTING QUERY: 'machine learning' WITH GAUSSIAN DECAY ===

=== TOP 4 RESULTS FOR 'machine learning' ===
1. New AI Research Results Released This Week
   Published: 2025-05-10 (5 days ago)
   Score: 0.8208

2. AI Development Updates Released Yesterday
   Published: 2025-05-14 (1 days ago)
   Score: 0.7287

3. Latest Deep Learning Models Show Remarkable Progress
   Published: 2025-04-30 (15 days ago)
   Score: 0.6633

4. AI Research Advancements Published in January
   Published: 2025-02-14 (90 days ago)
   Score: 0.0000

=== TESTING QUERY: 'neural networks' WITH GAUSSIAN DECAY ===

=== TOP 4 RESULTS FOR 'neural networks' ===
1. New AI Research Results Released This Week
   Published: 2025-05-10 (5 days ago)
   Score: 0.8509

2. AI Development Updates Released Yesterday
   Published: 2025-05-14 (1 days ago)
   Score: 0.7574

3. Latest Deep Learning Models Show Remarkable Progress
   Published: 2025-04-30 (15 days ago)
   Score: 0.6364

4. AI Research Advancements Published in January
   Published: 2025-02-14 (90 days ago)
   Score: 0.0000

=== TESTING QUERY: 'ethics in AI' WITH GAUSSIAN DECAY ===

=== TOP 4 RESULTS FOR 'ethics in AI' ===
1. New AI Research Results Released This Week
   Published: 2025-05-10 (5 days ago)
   Score: 0.7977

2. AI Development Updates Released Yesterday
   Published: 2025-05-14 (1 days ago)
   Score: 0.7322

3. AI Ethics Guidelines Released by International Body
   Published: 2025-04-15 (30 days ago)
   Score: 0.0814

4. AI Research Advancements Published in January
   Published: 2025-02-14 (90 days ago)
   Score: 0.0000

Conclusion

Time-based ranking using decay functions in Milvus provides a powerful way to balance semantic relevance with recency. By configuring the appropriate decay function and parameters, you can create search experiences that highlight fresh content while still respecting semantic relevance.

This approach is particularly valuable for:

  • News and media platforms

  • E-commerce product listings

  • Social media content feeds

  • Knowledge bases and documentation systems

  • Research paper repositories

By understanding the math behind decay functions and experimenting with different parameters, you can fine-tune your search system to provide the optimal balance between relevance and freshness for your specific use case.