Milvus
Zilliz
Home
  • User Guide
  • Home
  • Docs
  • User Guide

  • Schema & Data Fields

  • Analyzer

  • Filters

  • Remove Punct

Remove PunctCompatible with Milvus 2.5.11+

The removepunct filter removes standalone punctuation tokens from the token stream. Use it when you want cleaner text processing that focuses on meaningful content words rather than punctuation marks.

This filter is most effective with jieba, lindera, and icu tokenizers, which preserve punctuation as separate tokens (e.g., "Hello!"["Hello", "!"]). Other tokenizers like standard and whitespace discard punctuation during tokenization, so removepunct has no effect on them.

Configuration

The removepunct filter is built into Milvus. To use it, simply specify its name in the filter section within analyzer_params.

analyzer_params = {
    "tokenizer": "jieba",
    "filter": ["removepunct"]
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer", "jieba");
analyzerParams.put("filter", Collections.singletonList("removepunct"));
// node
analyzerParams = map[string]any{"tokenizer": "jieba", "filter": []any{"removepunct"}}
# restful

The removepunct filter operates on the terms generated by the tokenizer, so it must be used in combination with a tokenizer.

After defining analyzer_params, you can apply them to a VARCHAR field when defining a collection schema. This allows Milvus to process the text in that field using the specified analyzer for efficient tokenization and filtering. For details, refer to Example use.

Examples

Before applying the analyzer configuration to your collection schema, verify its behavior using the run_analyzer method.

Analyzer configuration

analyzer_params = {
    "tokenizer": "icu",
    "filter": ["removepunct"]
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer", "icu");
analyzerParams.put("filter", Collections.singletonList("removepunct"));
// node
analyzerParams = map[string]any{"tokenizer": "icu", "filter": []string{"removepunct"}}
# restful

Verification using run_analyzer

from pymilvus import (
    MilvusClient,
)

client = MilvusClient(uri="http://localhost:19530")

# Sample text to analyze
sample_text = "Привет! Как дела?"

# Run the standard analyzer with the defined configuration
result = client.run_analyzer(sample_text, analyzer_params)
print("Standard analyzer output:", result)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.vector.request.RunAnalyzerReq;
import io.milvus.v2.service.vector.response.RunAnalyzerResp;

ConnectConfig config = ConnectConfig.builder()
        .uri("http://localhost:19530")
        .build();
MilvusClientV2 client = new MilvusClientV2(config);

List<String> texts = new ArrayList<>();
texts.add("Привет! Как дела?");

RunAnalyzerResp resp = client.runAnalyzer(RunAnalyzerReq.builder()
        .texts(texts)
        .analyzerParams(analyzerParams)
        .build());
List<RunAnalyzerResp.AnalyzerResult> results = resp.getResults();
// javascript
import (
    "context"
    "encoding/json"
    "fmt"

    "github.com/milvus-io/milvus/client/v2/milvusclient"
)

client, err := milvusclient.New(ctx, &milvusclient.ClientConfig{
    Address: "localhost:19530",
    APIKey:  "root:Milvus",
})
if err != nil {
    fmt.Println(err.Error())
    // handle error
}

bs, _ := json.Marshal(analyzerParams)
texts := []string{"Привет! Как дела?"}
option := milvusclient.NewRunAnalyzerOption(texts).
    WithAnalyzerParams(string(bs))

result, err := client.RunAnalyzer(ctx, option)
if err != nil {
    fmt.Println(err.Error())
    // handle error
}
# restful

Expected output

['Привет', 'Как', 'дела']

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

Was this page helpful?