Remove PunctCompatible with Milvus 2.5.11+
The removepunct filter removes standalone punctuation tokens from the token stream. Use it when you want cleaner text processing that focuses on meaningful content words rather than punctuation marks.
This filter is most effective with jieba, lindera, and icu tokenizers, which preserve punctuation as separate tokens (e.g., "Hello!" → ["Hello", "!"]). Other tokenizers like standard and whitespace discard punctuation during tokenization, so removepunct has no effect on them.
Configuration
The removepunct filter is built into Milvus. To use it, simply specify its name in the filter section within analyzer_params.
analyzer_params = {
"tokenizer": "jieba",
"filter": ["removepunct"]
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer", "jieba");
analyzerParams.put("filter", Collections.singletonList("removepunct"));
// node
analyzerParams = map[string]any{"tokenizer": "jieba", "filter": []any{"removepunct"}}
# restful
The removepunct filter operates on the terms generated by the tokenizer, so it must be used in combination with a tokenizer.
After defining analyzer_params, you can apply them to a VARCHAR field when defining a collection schema. This allows Milvus to process the text in that field using the specified analyzer for efficient tokenization and filtering. For details, refer to Example use.
Examples
Before applying the analyzer configuration to your collection schema, verify its behavior using the run_analyzer method.
Analyzer configuration
analyzer_params = {
"tokenizer": "icu",
"filter": ["removepunct"]
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer", "icu");
analyzerParams.put("filter", Collections.singletonList("removepunct"));
// node
analyzerParams = map[string]any{"tokenizer": "icu", "filter": []string{"removepunct"}}
# restful
Verification using run_analyzer
from pymilvus import (
MilvusClient,
)
client = MilvusClient(uri="http://localhost:19530")
# Sample text to analyze
sample_text = "Привет! Как дела?"
# Run the standard analyzer with the defined configuration
result = client.run_analyzer(sample_text, analyzer_params)
print("Standard analyzer output:", result)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.vector.request.RunAnalyzerReq;
import io.milvus.v2.service.vector.response.RunAnalyzerResp;
ConnectConfig config = ConnectConfig.builder()
.uri("http://localhost:19530")
.build();
MilvusClientV2 client = new MilvusClientV2(config);
List<String> texts = new ArrayList<>();
texts.add("Привет! Как дела?");
RunAnalyzerResp resp = client.runAnalyzer(RunAnalyzerReq.builder()
.texts(texts)
.analyzerParams(analyzerParams)
.build());
List<RunAnalyzerResp.AnalyzerResult> results = resp.getResults();
// javascript
import (
"context"
"encoding/json"
"fmt"
"github.com/milvus-io/milvus/client/v2/milvusclient"
)
client, err := milvusclient.New(ctx, &milvusclient.ClientConfig{
Address: "localhost:19530",
APIKey: "root:Milvus",
})
if err != nil {
fmt.Println(err.Error())
// handle error
}
bs, _ := json.Marshal(analyzerParams)
texts := []string{"Привет! Как дела?"}
option := milvusclient.NewRunAnalyzerOption(texts).
WithAnalyzerParams(string(bs))
result, err := client.RunAnalyzer(ctx, option)
if err != nil {
fmt.Println(err.Error())
// handle error
}
# restful
Expected output
['Привет', 'Как', 'дела']