milvus-logo
LFAI
Home
  • User Guide

Nullable & Default​

Milvus allows you to set the nullable attribute and default values for scalar fields, except the primary field. For fields marked as nullable=True, you can skip the field when inserting data, or set it directly to a null value, and the system will treat it as null without causing an error. When a field has a default value, the system will automatically apply this value if no data is specified for the field during insertion.​

The default value and nullable attributes streamline data migration from other database systems to Milvus by allowing handling of datasets with null values and preserving default value settings. When creating a collection, you can also enable nullable or set default values for fields where values might be uncertain.​

Limits

  • Only scalar fields, excluding the primary field, support default values and the nullable attribute.​

  • JSON and Array fields do not support default values.​

  • Default values or the nullable attribute can only be configured during collection creation and cannot be modified afterward.​

  • Scalar fields with the nullable attribute enabled cannot be used as group_by_field in Grouping Search. For more information about grouping search, refer to ​Grouping Search.​

  • Fields marked as nullable cannot be used as partition keys. For more information about partition keys, refer to ​Use Partition Key.​

  • When creating an index on a scalar field with the nullable attribute enabled, null values will be excluded from the index.​

Nullable attribute

The nullable attribute allows you to store null values in a collection, providing flexibility when handling unknown data.​

Set the nullable attribute​

When creating a collection, use nullable=True to define nullable fields (defaults to False). The following example creates a collection named user_profiles_null and sets the age field as nullable:​

from pymilvus import MilvusClient, DataType​
​
client = MilvusClient(uri='http://localhost:19530')​
​
# Define collection schema​
schema = client.create_schema(​
    auto_id=False,​
    enable_dynamic_schema=True,​
)​
​
schema.add_field(field_name="id", datatype=DataType.INT64, is_primary=True)​
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=5)​
schema.add_field(field_name="age", datatype=DataType.INT64, nullable=True) # Nullable field​# Set index params​
index_params = client.prepare_index_params()​
index_params.add_index(field_name="vector", index_type="IVF_FLAT", metric_type="L2", params={ "nlist": 128 })​
​
# Create collection​
client.create_collection(collection_name="user_profiles_null", schema=schema, index_params=index_params)​

import io.milvus.v2.client.ConnectConfig;​
import io.milvus.v2.client.MilvusClientV2;​
import io.milvus.v2.common.DataType;​
import io.milvus.v2.common.IndexParam;​
import io.milvus.v2.service.collection.request.AddFieldReq;​
import io.milvus.v2.service.collection.request.CreateCollectionReq;​
​
import java.util.*;​
​
MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()​
        .uri("http://localhost:19530")​
        .build());​
        ​
CreateCollectionReq.CollectionSchema schema = client.createSchema();​
schema.setEnableDynamicField(true);​
​
schema.addField(AddFieldReq.builder()​
        .fieldName("id")​
        .dataType(DataType.Int64)​
        .isPrimaryKey(true)​
        .build());​
​
schema.addField(AddFieldReq.builder()​
        .fieldName("vector")​
        .dataType(DataType.FloatVector)​
        .dimension(5)​
        .build());​
​
schema.addField(AddFieldReq.builder()​
        .fieldName("age")​
        .dataType(DataType.Int64)​
        .isNullable(true)​
        .build());​
​
List<IndexParam> indexes = new ArrayList<>();​
Map<String,Object> extraParams = new HashMap<>();​
extraParams.put("nlist", 128);​
indexes.add(IndexParam.builder()​
        .fieldName("vector")​
        .indexType(IndexParam.IndexType.IVF_FLAT)​
        .metricType(IndexParam.MetricType.L2)​
        .extraParams(extraParams)​
        .build());​
​
CreateCollectionReq requestCreate = CreateCollectionReq.builder()​
        .collectionName("user_profiles_null")​
        .collectionSchema(schema)​
        .indexParams(indexes)​
        .build();​
client.createCollection(requestCreate);​

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";​
​
const client = new MilvusClient({​
  address: "http://localhost:19530",​
  token: "root:Milvus",​
});​
​
await client.createCollection({​
  collection_name: "user_profiles_null",​
  schema: [​
    {​
      name: "id",​
      is_primary_key: true,​
      data_type: DataType.int64,​
    },​
    { name: "vector", data_type: DataType.Int64, dim: 5 },​
​
    { name: "age", data_type: DataType.FloatVector, nullable: true },​
  ],​
​
  index_params: [​
    {​
      index_name: "vector_inde",​
      field_name: "vector",​
      metric_type: MetricType.L2,​
      index_type: IndexType.AUTOINDEX,​
    },​
  ],​
});​
​

export pkField='{​
    "fieldName": "id",​
    "dataType": "Int64",​
    "isPrimary": true​
}'​
​
export vectorField='{​
    "fieldName": "vector",​
    "dataType": "FloatVector",​
    "elementTypeParams": {​
        "dim": 5​
    }​
}'​
​
export nullField='{​
    "fieldName": "age",​
    "dataType": "Int64",​
    "nullable": true​
}'​
​
export schema="{​
    \"autoID\": false,​
    \"fields\": [​
        $pkField,​
        $vectorField,​
        $nullField​
    ]​
}"​
​
export indexParams='[​
        {​
            "fieldName": "vector",​
            "metricType": "L2",​
            "indexType": "IVF_FLAT",​
            "params":{"nlist": 128}​
        }​
    ]'​
​
curl --request POST \​
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \​
--header "Authorization: Bearer ${TOKEN}" \​
--header "Content-Type: application/json" \​
-d "{​
    \"collectionName\": \"user_profiles_null\",​
    \"schema\": $schema,​
    \"indexParams\": $indexParams​
}"

Insert entities

When you insert data into a nullable field, insert null or directly omit this field:​

data = [​
    {"id": 1, "vector": [0.1, 0.2, 0.3, 0.4, 0.5], "age": 30},​
    {"id": 2, "vector": [0.2, 0.3, 0.4, 0.5, 0.6], "age": None},​
    {"id": 3, "vector": [0.3, 0.4, 0.5, 0.6, 0.7]}​
]​
​
client.insert(collection_name="user_profiles_null", data=data)​

import com.google.gson.Gson;​
import com.google.gson.JsonObject;​
​
import io.milvus.v2.service.vector.request.InsertReq;​
import io.milvus.v2.service.vector.response.InsertResp;​
​
List<JsonObject> rows = new ArrayList<>();​
Gson gson = new Gson();​
rows.add(gson.fromJson("{\"id\": 1, \"vector\": [0.1, 0.2, 0.3, 0.4, 0.5], \"age\": 30}", JsonObject.class));​
rows.add(gson.fromJson("{\"id\": 2, \"vector\": [0.2, 0.3, 0.4, 0.5, 0.6], \"age\": null}", JsonObject.class));​
rows.add(gson.fromJson("{\"id\": 3, \"vector\": [0.3, 0.4, 0.5, 0.6, 0.7]}", JsonObject.class));​
​
InsertResp insertR = client.insert(InsertReq.builder()​
        .collectionName("user_profiles_null")​
        .data(rows)​
        .build());​

const data = [​
  { id: 1, vector: [0.1, 0.2, 0.3, 0.4, 0.5], age: 30 },​
  { id: 2, vector: [0.2, 0.3, 0.4, 0.5, 0.6], age: null },​
  { id: 3, vector: [0.3, 0.4, 0.5, 0.6, 0.7] },​
];​
​
client.insert({​
  collection_name: "user_profiles_null",​
  data: data,​
});​
​

curl --request POST \​
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/insert" \​
--header "Authorization: Bearer ${TOKEN}" \​
--header "Content-Type: application/json" \​
-d '{​
    "data": [​
        {"id": 1, "vector": [0.1, 0.2, 0.3, 0.4, 0.5], "age": 30},​
        {"id": 2, "vector": [0.2, 0.3, 0.4, 0.5, 0.6], "age": null}, ​
        {"id": 3, "vector": [0.3, 0.4, 0.5, 0.6, 0.7]} ​
    ],​
    "collectionName": "user_profiles_null"​
}'

Search and query with null values​

When using the search method, if a field contains null values, the search result will return the field as null:​

res = client.search(​
    collection_name="user_profiles_null",​
    data=[[0.1, 0.2, 0.4, 0.3, 0.128]],​
    limit=2,​
    search_params={"params": {"nprobe": 16}},​
    output_fields=["id", "age"]​
)​
​
print(res)​
​
# Output​
# data: ["[{'id': 1, 'distance': 0.15838398039340973, 'entity': {'age': 30, 'id': 1}}, {'id': 2, 'distance': 0.28278401494026184, 'entity': {'age': None, 'id': 2}}]"] ​

import io.milvus.v2.service.vector.request.SearchReq;​
import io.milvus.v2.service.vector.request.data.FloatVec;​
import io.milvus.v2.service.vector.response.SearchResp;​
​
Map<String,Object> params = new HashMap<>();​
params.put("nprobe", 16);​
SearchResp resp = client.search(SearchReq.builder()​
        .collectionName("user_profiles_null")​
        .annsField("vector")​
        .data(Collections.singletonList(new FloatVec(new float[]{0.1f, 0.2f, 0.3f, 0.4f, 0.5f})))​
        .topK(2)​
        .searchParams(params)​
        .outputFields(Arrays.asList("id", "age"))​
        .build());​
​
System.out.println(resp.getSearchResults());​
​
// Output​
//​
// [[SearchResp.SearchResult(entity={id=1, age=30}, score=0.0, id=1), SearchResp.SearchResult(entity={id=2, age=null}, score=0.050000004, id=2)]]​

client.search({​
    collection_name: 'user_profiles_null',​
    data: [0.3, -0.6, 0.1, 0.3, 0.5],​
    limit: 2,​
    output_fields: ['age', 'id'],​
    filter: '25 <= age <= 35',​
    params: {​
        nprobe: 16​
    }​
});​

curl --request POST \​
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \​
--header "Authorization: Bearer ${TOKEN}" \​
--header "Content-Type: application/json" \​
-d '{​
    "collectionName": "user_profiles_null",​
    "data": [​
        [0.1, -0.2, 0.3, 0.4, 0.5]​
    ],​
    "annsField": "vector",​
    "limit": 5,​
    "outputFields": ["id", "age"]​
}'​
​
#{"code":0,"cost":0,"data":[{"age":30,"distance":0.16000001,"id":1},{"age":null,"distance":0.28999996,"id":2},{"age":null,"distance":0.52000004,"id":3}]}​

When you use the query method for scalar filtering, the filtering results for null values are all false, indicating that they will not be selected.​

# Reviewing previously inserted data:​
# {"id": 1, "vector": [0.1, 0.2, ..., 0.128], "age": 30}​
# {"id": 2, "vector": [0.2, 0.3, ..., 0.129], "age": None}​
# {"id": 3, "vector": [0.3, 0.4, ..., 0.130], "age": None}  # Omitted age  column is treated as None​
​
results = client.query(​
    collection_name="user_profiles_null",​
    filter="age >= 0",​
    output_fields=["id", "age"]​
)​
​
# Example output:​
# [​
#     {"id": 1, "age": 30}​
# ]​
# Note: Entities with `age` as `null` (id 2 and 3) will not appear in the result.​

import io.milvus.v2.service.vector.request.QueryReq;​
import io.milvus.v2.service.vector.response.QueryResp;​
​
QueryResp resp = client.query(QueryReq.builder()​
        .collectionName("user_profiles_null")​
        .filter("age >= 0")​
        .outputFields(Arrays.asList("id", "age"))​
        .build());​
​
System.out.println(resp.getQueryResults());​
​
// Output​
//​
// [QueryResp.QueryResult(entity={id=1, age=30})]​

const results = await client.query(​
    collection_name: "user_profiles_null",​
    filter: "age >= 0",​
    output_fields: ["id", "age"]​
);​

curl --request POST \​
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \​
--header "Authorization: Bearer ${TOKEN}" \​
--header "Content-Type: application/json" \​
-d '{​
    "collectionName": "user_profiles_null",​
    "filter": "age >= 0",​
    "outputFields": ["id", "age"]​
}'​
​
# {"code":0,"cost":0,"data":[{"age":30,"id":1}]}​

To query entities with null values, use an empty expression "":​

null_results = client.query(​
    collection_name="user_profiles_null",​
    filter="",​
    output_fields=["id", "age"]​
)​
​
# Example output:​
# [{"id": 2, "age": None}, {"id": 3, "age": None}]​

QueryResp resp = client.query(QueryReq.builder()​
        .collectionName("user_profiles_null")​
        .filter("")​
        .outputFields(Arrays.asList("id", "age"))​
        .limit(10)​
        .build());​
​
System.out.println(resp.getQueryResults());​

const results = await client.query(​
    collection_name: "user_profiles_null",​
    filter: "",​
    output_fields: ["id", "age"]​
);​

curl --request POST \​
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \​
--header "Authorization: Bearer ${TOKEN}" \​
--header "Content-Type: application/json" \​
-d '{​
    "collectionName": "user_profiles_null",​
    "expr": "",​
    "outputFields": ["id", "age"]​
}'​
​
# {"code":0,"cost":0,"data":[{"age":30,"id":1},{"age":null,"id":2},{"age":null,"id":3}]}​

Default values​

Default values are preset values assigned to scalar fields. If you do not provide a value for a field with a default during insertion, the system automatically uses the default value.​

Set default values

When creating a collection, use the default_value parameter to define the default value for a field. The following example shows how to set the default value of age to 18 and status to "active":​

schema = client.create_schema(​
    auto_id=False,​
    enable_dynamic_schema=True,​
)​
​
schema.add_field(field_name="id", datatype=DataType.INT64, is_primary=True)​
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=5)​
schema.add_field(field_name="age", datatype=DataType.INT64, default_value=18)​
schema.add_field(field_name="status", datatype=DataType.VARCHAR, default_value="active", max_length=10)​
​
index_params = client.prepare_index_params()​
index_params.add_index(field_name="vector", index_type="IVF_FLAT", metric_type="L2", params={ "nlist": 128 })​
​
client.create_collection(collection_name="user_profiles_default", schema=schema, index_params=index_params)​

import io.milvus.v2.common.DataType;​
import io.milvus.v2.common.IndexParam;​
import io.milvus.v2.service.collection.request.AddFieldReq;​
import io.milvus.v2.service.collection.request.CreateCollectionReq;​
​
import java.util.*;​
​
CreateCollectionReq.CollectionSchema schema = client.createSchema();​
schema.setEnableDynamicField(true);​
​
schema.addField(AddFieldReq.builder()​
        .fieldName("id")​
        .dataType(DataType.Int64)​
        .isPrimaryKey(true)​
        .build());​
​
schema.addField(AddFieldReq.builder()​
        .fieldName("vector")​
        .dataType(DataType.FloatVector)​
        .dimension(5)​
        .build());​
​
schema.addField(AddFieldReq.builder()​
        .fieldName("age")​
        .dataType(DataType.Int64)​
        .defaultValue(18L)​
        .build());​
​
schema.addField(AddFieldReq.builder()​
        .fieldName("status")​
        .dataType(DataType.VarChar)​
        .maxLength(10)​
        .defaultValue("active")​
        .build());​
​
List<IndexParam> indexes = new ArrayList<>();​
Map<String,Object> extraParams = new HashMap<>();​
extraParams.put("nlist", 128);​
indexes.add(IndexParam.builder()​
        .fieldName("vector")​
        .indexType(IndexParam.IndexType.IVF_FLAT)​
        .metricType(IndexParam.MetricType.L2)​
        .extraParams(extraParams)​
        .build());​
​
CreateCollectionReq requestCreate = CreateCollectionReq.builder()​
        .collectionName("user_profiles_default")​
        .collectionSchema(schema)​
        .indexParams(indexes)​
        .build();​
client.createCollection(requestCreate);​

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";​
​
const client = new MilvusClient({​
  address: "http://localhost:19530",​
  token: "root:Milvus",​
});​
​
await client.createCollection({​
  collection_name: "user_profiles_default",​
  schema: [​
    {​
      name: "id",​
      is_primary_key: true,​
      data_type: DataType.int64,​
    },​
    { name: "vector", data_type: DataType.FloatVector, dim: 5 },​
    { name: "age", data_type: DataType.Int64, default_value: 18 },​
    { name: 'status', data_type: DataType.VarChar, max_length: 30, default_value: 'active'},​
  ],​
​
  index_params: [​
    {​
      index_name: "vector_inde",​
      field_name: "vector",​
      metric_type: MetricType.L2,​
      index_type: IndexType.IVF_FLAT,​
    },​
  ],​
});​
​

export pkField='{​
    "fieldName": "id",​
    "dataType": "Int64",​
    "isPrimary": true​
}'​
​
export vectorField='{​
    "fieldName": "vector",​
    "dataType": "FloatVector",​
    "elementTypeParams": {​
        "dim": 5​
    }​
}'​
​
export defaultValueField1='{​
    "fieldName": "age",​
    "dataType": "Int64",​
    "defaultValue": 18​
}'​
​
export defaultValueField2='{​
    "fieldName": "status",​
    "dataType": "VarChar",​
    "defaultValue": "active",​
    "elementTypeParams": {​
        "max_length": 10​
    }​
}'​
​
export schema="{​
    \"autoID\": false,​
    \"fields\": [​
        $pkField,​
        $vectorField,​
        $defaultValueField1,​
        $defaultValueField2​
    ]​
}"​
​
export indexParams='[​
        {​
            "fieldName": "vector",​
            "metricType": "L2",​
            "indexType": "IVF_FLAT",​
            "params":{"nlist": 128}​
        }​
    ]'​
​
curl --request POST \​
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \​
--header "Authorization: Bearer ${TOKEN}" \​
--header "Content-Type: application/json" \​
-d "{​
    \"collectionName\": \"user_profiles_default\",​
    \"schema\": $schema,​
    \"indexParams\": $indexParams​
}"

Insert entities

When inserting data, if you omit fields with a default value or set their value to null, the system uses the default value:​

data = [​
    {"id": 1, "vector": [0.1, 0.2, ..., 0.128], "age": 30, "status": "premium"},​
    {"id": 2, "vector": [0.2, 0.3, ..., 0.129]},
    {"id": 3, "vector": [0.3, 0.4, ..., 0.130], "age": 25, "status": None}, 
    {"id": 4, "vector": [0.4, 0.5, ..., 0.131], "age": None, "status": "inactive"} 
]​
​
client.insert(collection_name="user_profiles_default", data=data)​

import com.google.gson.Gson;​
import com.google.gson.JsonObject;​
​
import io.milvus.v2.service.vector.request.InsertReq;​
import io.milvus.v2.service.vector.response.InsertResp;​
​
List<JsonObject> rows = new ArrayList<>();​
Gson gson = new Gson();​
rows.add(gson.fromJson("{\"id\": 1, \"vector\": [0.1, 0.2, 0.3, 0.4, 0.5], \"age\": 30, \"status\": \"premium\"}", JsonObject.class));​
rows.add(gson.fromJson("{\"id\": 2, \"vector\": [0.2, 0.3, 0.4, 0.5, 0.6]}", JsonObject.class));​
rows.add(gson.fromJson("{\"id\": 3, \"vector\": [0.3, 0.4, 0.5, 0.6, 0.7], \"age\": 25, \"status\": null}", JsonObject.class));​
rows.add(gson.fromJson("{\"id\": 4, \"vector\": [0.4, 0.5, 0.6, 0.7, 0.8], \"age\": null, \"status\": \"inactive\"}", JsonObject.class));​
​
InsertResp insertR = client.insert(InsertReq.builder()​
        .collectionName("user_profiles_default")​
        .data(rows)​
        .build());​

const data = [​
    {"id": 1, "vector": [0.1, 0.2, 0.3, 0.4, 0.5], "age": 30, "status": "premium"},​
    {"id": 2, "vector": [0.2, 0.3, 0.4, 0.5, 0.6]}, ​
    {"id": 3, "vector": [0.3, 0.4, 0.5, 0.6, 0.7], "age": 25, "status": null}, ​
    {"id": 4, "vector": [0.4, 0.5, 0.6, 0.7, 0.8], "age": null, "status": "inactive"}  ​
];​
​
client.insert({​
  collection_name: "user_profiles_default",​
  data: data,​
});​

curl --request POST \​
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/insert" \​
--header "Authorization: Bearer ${TOKEN}" \​
--header "Content-Type: application/json" \​
-d '{​
    "data": [​
        {"id": 1, "vector": [0.1, 0.2, 0.3, 0.4, 0.5], "age": 30, "status": "premium"},​
        {"id": 2, "vector": [0.2, 0.3, 0.4, 0.5, 0.6]},​
        {"id": 3, "vector": [0.3, 0.4, 0.5, 0.6, 0.7], "age": 25, "status": null}, ​
        {"id": 4, "vector": [0.4, 0.5, 0.6, 0.7, 0.8], "age": null, "status": "inactive"}      ​
    ],​
    "collectionName": "user_profiles_default"​
}'

For more information on how nullable and default value settings take effect, refer to Applicable rules.

Search and query with default values

Entities that contain default values are treated the same as any other entities during vector searches and scalar filtering. You can include default values as part of your search and query operations.​

For example, in a search operation, entities with age set to the default value of 18 will be included in the results:​

res = client.search(​
    collection_name="user_profiles_default",​
    data=[[0.1, 0.2, 0.4, 0.3, 0.128]],​
    search_params={"params": {"nprobe": 16}},​
    filter="age == 18",  # 18 is the default value of the `age` field​
    limit=10,​
    output_fields=["id", "age", "status"]​
)​
​
print(res)​
​
# Output​
# data: ["[{'id': 2, 'distance': 0.28278401494026184, 'entity': {'id': 2, 'age': 18, 'status': 'active'}}, {'id': 4, 'distance': 0.8315839767456055, 'entity': {'id': 4, 'age': 18, 'status': 'inactive'}}]"] ​
import io.milvus.v2.service.vector.request.SearchReq;​
import io.milvus.v2.service.vector.request.data.FloatVec;​
import io.milvus.v2.service.vector.response.SearchResp;​
​
Map<String,Object> params = new HashMap<>();​
params.put("nprobe", 16);​
SearchResp resp = client.search(SearchReq.builder()​
        .collectionName("user_profiles_default")​
        .annsField("vector")​
        .data(Collections.singletonList(new FloatVec(new float[]{0.1f, 0.2f, 0.3f, 0.4f, 0.5f})))​
        .searchParams(params)​
        .filter("age == 18")​
        .topK(10)​
        .outputFields(Arrays.asList("id", "age", "status"))​
        .build());​
​
System.out.println(resp.getSearchResults());​
​
// Output​
//​
// [[SearchResp.SearchResult(entity={id=2, age=18, status=active}, score=0.050000004, id=2), SearchResp.SearchResult(entity={id=4, age=18, status=inactive}, score=0.45000002, id=4)]]​

client.search({​
    collection_name: 'user_profiles_default',​
    data: [0.3, -0.6, 0.1, 0.3, 0.5],​
    limit: 2,​
    output_fields: ['age', 'id', 'status'],​
    filter: 'age == 18',​
    params: {​
        nprobe: 16​
    }​
});​

curl --request POST \​
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \​
--header "Authorization: Bearer ${TOKEN}" \​
--header "Content-Type: application/json" \​
-d '{​
    "collectionName": "user_profiles_default",​
    "data": [​
        [0.1, 0.2, 0.3, 0.4, 0.5]​
    ],​
    "annsField": "vector",​
    "limit": 5,​
    "filter": "age == 18",​
    "outputFields": ["id", "age", "status"]​
}'​
​
# {"code":0,"cost":0,"data":[{"age":18,"distance":0.050000004,"id":2,"status":"active"},{"age":18,"distance":0.45000002,"id":4,"status":"inactive"}]}​

In a query operation, you can match or filter by default values directly:​

# Query all entities where `age` equals the default value (18)​
default_age_results = client.query(​
    collection_name="user_profiles_default",​
    filter="age == 18",​
    output_fields=["id", "age", "status"]​
)​
​
# Query all entities where `status` equals the default value ("active")​
default_status_results = client.query(​
    collection_name="user_profiles_default",​
    filter='status == "active"',​
    output_fields=["id", "age", "status"]​
)​

import io.milvus.v2.service.vector.request.QueryReq;​
import io.milvus.v2.service.vector.response.QueryResp;​
​
QueryResp ageResp = client.query(QueryReq.builder()​
        .collectionName("user_profiles_default")​
        .filter("age == 18")​
        .outputFields(Arrays.asList("id", "age", "status"))​
        .build());​
​
System.out.println(ageResp.getQueryResults());​
​
// Output​
//​
// [QueryResp.QueryResult(entity={id=2, age=18, status=active}), QueryResp.QueryResult(entity={id=4, age=18, status=inactive})]​QueryResp statusResp = client.query(QueryReq.builder()​
        .collectionName("user_profiles_default")​
        .filter("status == \"active\"")​
        .outputFields(Arrays.asList("id", "age", "status"))​
        .build());​
​
System.out.println(statusResp.getQueryResults());​
​
// Output​
//​
// [QueryResp.QueryResult(entity={id=2, age=18, status=active}), QueryResp.QueryResult(entity={id=3, age=25, status=active})]​

// Query all entities where `age` equals the default value (18)​
const default_age_results = await client.query(​
    collection_name: "user_profiles_default",​
    filter: "age == 18",​
    output_fields: ["id", "age", "status"]​
);​
// Query all entities where `status` equals the default value ("active")​
const default_status_results = await client.query(​
    collection_name: "user_profiles_default",​
    filter: 'status == "active"',​
    output_fields: ["id", "age", "status"]​
)​

curl --request POST \​
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \​
--header "Authorization: Bearer ${TOKEN}" \​
--header "Content-Type: application/json" \​
-d '{​
    "collectionName": "user_profiles_default",​
    "filter": "age == 18",​
    "outputFields": ["id", "age", "status"]​
}'​
​
# {"code":0,"cost":0,"data":[{"age":18,"id":2,"status":"active"},{"age":18,"id":4,"status":"inactive"}]}​
​
curl --request POST \​
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \​
--header "Authorization: Bearer ${TOKEN}" \​
--header "Content-Type: application/json" \​
-d '{​
    "collectionName": "user_profiles_default",​
    "filter": "status == \"active\"",​
    "outputFields": ["id", "age", "status"]​
}'​
​
# {"code":0,"cost":0,"data":[{"age":18,"id":2,"status":"active"},{"age":25,"id":3,"status":"active"}]}​

Applicable rules

The following table summarizes the behavior of nullable columns and default values under different configuration combinations. These rules determine how Milvus handles data when attempting to insert null values or if field values are not provided.​ ​

NullableDefault ValueDefault Value TypeUser InputResultExample
Non-nullNone/nullUses the default value
  • Field: age
  • Default value: 18
  • User input: null
  • Result: stored as 18
-None/nullStored as null
  • Field: middle_name
  • Default value: -
  • User input: null
  • Result: stored as null
Non-nullNone/nullUses the default value
  • Field: status
  • Default value: "active"
  • User input: null
  • Result: stored as "active"
-None/nullThrows an error
  • Field: email
  • Default value: -
  • User input: null
  • Result: Operation rejected, system throws an error
NullNone/nullThrows an error
  • Field: username
  • Default value: null
  • User input: null
  • Result: Operation rejected, system throws an error

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

Was this page helpful?