使用Partition Key
本指南将指导您使用Partition Key来加速从收藏中检索数据。
概述
你可以将集合中的一个特定字段设置为分区键,这样 Milvus 就会根据该字段中各自的分区值,将进入的实体分配到不同的分区中。这样,具有相同键值的实体就会被归类到一个分区中,从而在通过键字段进行过滤时,无需扫描无关的分区,从而加快了搜索性能。与传统的过滤方法相比,分区键可以大大提高查询性能。
您可以使用Partition Key实现多租户。有关多租户的详细信息,请阅读多租户。
启用Partition Key
要将某个字段设置为分区键,请在创建Collection Schema 时指定partition_key_field
。
在下面的示例代码中,num_partitions
决定将创建的分区数量。默认情况下,它被设置为16
。建议保留默认值。
有关参数的更多信息,请参阅 MilvusClient
, create_schema()
和 add_field()
有关参数的更多信息,请参阅 SDK 参考资料。
有关参数的更多信息,请参阅 MilvusClientV2
, createSchema()
和 addField()
有关参数的更多信息,请参阅 SDK 参考资料中的
有关参数的更多信息,请参阅 MilvusClient
和 createCollection()
的 SDK 参考资料。
import random, time
from pymilvus import connections, MilvusClient, DataType
SERVER_ADDR = "http://localhost:19530"
# 1. Set up a Milvus client
client = MilvusClient(
uri=SERVER_ADDR
)
# 2. Create a collection
schema = MilvusClient.create_schema(
auto_id=False,
enable_dynamic_field=True,
partition_key_field="color",
num_partitions=16 # Number of partitions. Defaults to 16.
)
schema.add_field(field_name="id", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=5)
schema.add_field(field_name="color", datatype=DataType.VARCHAR, max_length=512)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.common.DataType;
import io.milvus.v2.common.IndexParam;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;
String CLUSTER_ENDPOINT = "http://localhost:19530";
// 1. Connect to Milvus server
ConnectConfig connectConfig = ConnectConfig.builder()
.uri(CLUSTER_ENDPOINT)
.build();
MilvusClientV2 client = new MilvusClientV2(connectConfig);
// 2. Create a collection in customized setup mode
// 2.1 Create schema
CreateCollectionReq.CollectionSchema schema = client.createSchema();
// 2.2 Add fields to schema
schema.addField(AddFieldReq.builder()
.fieldName("id")
.dataType(DataType.Int64)
.isPrimaryKey(true)
.autoID(false)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("vector")
.dataType(DataType.FloatVector)
.dimension(5)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("color")
.dataType(DataType.VarChar)
.maxLength(512)
.isPartitionKey(true)
.build());
const { MilvusClient, DataType, sleep } = require("@zilliz/milvus2-sdk-node")
const address = "http://localhost:19530"
async function main() {
// 1. Set up a Milvus Client
client = new MilvusClient({address});
// 2. Create a collection
// 2.1 Define fields
const fields = [
{
name: "id",
data_type: DataType.Int64,
is_primary_key: true,
auto_id: false
},
{
name: "vector",
data_type: DataType.FloatVector,
dim: 5
},
{
name: "color",
data_type: DataType.VarChar,
max_length: 512,
is_partition_key: true
}
]
定义字段后,设置索引参数。
index_params = MilvusClient.prepare_index_params()
index_params.add_index(
field_name="id",
index_type="STL_SORT"
)
index_params.add_index(
field_name="color",
index_type="Trie"
)
index_params.add_index(
field_name="vector",
index_type="IVF_FLAT",
metric_type="L2",
params={"nlist": 1024}
)
// 2.3 Prepare index parameters
IndexParam indexParamForVectorField = IndexParam.builder()
.fieldName("vector")
.indexType(IndexParam.IndexType.IVF_FLAT)
.metricType(IndexParam.MetricType.IP)
.extraParams(Map.of("nlist", 1024))
.build();
List<IndexParam> indexParams = new ArrayList<>();
indexParams.add(indexParamForVectorField);
// 2.2 Prepare index parameters
const index_params = [{
field_name: "color",
index_type: "Trie"
},{
field_name: "id",
index_type: "STL_SORT"
},{
field_name: "vector",
index_type: "IVF_FLAT",
metric_type: "IP",
params: { nlist: 1024}
}]
最后,您可以创建一个集合。
client.create_collection(
collection_name="test_collection",
schema=schema,
index_params=index_params
)
// 2.4 Create a collection with schema and index parameters
CreateCollectionReq customizedSetupReq = CreateCollectionReq.builder()
.collectionName("test_collection")
.collectionSchema(schema)
.indexParams(indexParams)
.build();
client.createCollection(customizedSetupReq);
// 2.3 Create a collection with fields and index parameters
res = await client.createCollection({
collection_name: "test_collection",
fields: fields,
index_params: index_params,
})
console.log(res.error_code)
// Output
//
// Success
//
列出分区
一旦某个集合的字段被用作分区键,Milvus 就会创建指定数量的分区,并代表你管理它们。因此,你不能再操作该集合中的分区。
下面的代码段演示了一旦某个字段被用作分区键,会在集合中创建 64 个分区。
插入数据
集合准备就绪后,开始按如下步骤插入数据:
准备数据
# 3. Insert randomly generated vectors
colors = ["green", "blue", "yellow", "red", "black", "white", "purple", "pink", "orange", "brown", "grey"]
data = []
for i in range(1000):
current*color = random.choice(colors)
current_tag = random.randint(1000, 9999)
data.append({
"id": i,
"vector": [ random.uniform(-1, 1) for * in range(5) ],
"color": current*color,
"tag": current_tag,
"color_tag": f"{current_color}*{str(current_tag)}"
})
print(data[0])
// 3. Insert randomly generated vectors
List<String> colors = Arrays.asList("green", "blue", "yellow", "red", "black", "white", "purple", "pink", "orange", "brown", "grey");
List<JSONObject> data = new ArrayList<>();
for (int i=0; i<1000; i++) {
Random rand = new Random();
String current_color = colors.get(rand.nextInt(colors.size()-1));
int current_tag = rand.nextInt(8999) + 1000;
JSONObject row = new JSONObject();
row.put("id", Long.valueOf(i));
row.put("vector", Arrays.asList(rand.nextFloat(), rand.nextFloat(), rand.nextFloat(), rand.nextFloat(), rand.nextFloat()));
row.put("color", current_color);
row.put("tag", current_tag);
row.put("color_tag", current_color + "_" + String.valueOf(rand.nextInt(8999) + 1000));
data.add(row);
}
System.out.println(JSONObject.toJSON(data.get(0)));
// 3. Insert randomly generated vectors
const colors = ["green", "blue", "yellow", "red", "black", "white", "purple", "pink", "orange", "brown", "grey"]
var data = []
for (let i = 0; i < 1000; i++) {
const current_color = colors[Math.floor(Math.random() * colors.length)]
const current_tag = Math.floor(Math.random() * 8999 + 1000)
data.push({
id: i,
vector: [Math.random(), Math.random(), Math.random(), Math.random(), Math.random()],
color: current_color,
tag: current_tag,
color_tag: `${current_color}_${current_tag}`
})
}
console.log(data[0])
您可以通过查看第一个条目来查看生成数据的结构。
{
id: 0,
vector: [
0.1275656405044483,
0.47417858592773277,
0.13858264437643286,
0.2390904907020377,
0.8447862593689635
],
color: 'blue',
tag: 2064,
color_tag: 'blue_2064'
}
插入数据
使用 insert()
方法将数据插入集合。
使用 insert()
方法将数据插入数据集。
使用 insert()
方法将数据插入集合。
res = client.insert(
collection_name="test_collection",
data=data
)
print(res)
# Output
#
# {
# "insert_count": 1000,
# "ids": [
# 0,
# 1,
# 2,
# 3,
# 4,
# 5,
# 6,
# 7,
# 8,
# 9,
# "(990 more items hidden)"
# ]
# }
// 3.1 Insert data into the collection
InsertReq insertReq = InsertReq.builder()
.collectionName("test_collection")
.data(data)
.build();
InsertResp insertResp = client.insert(insertReq);
System.out.println(JSONObject.toJSON(insertResp));
// Output:
// {"insertCnt": 1000}
res = await client.insert({
collection_name: "test_collection",
data: data,
})
console.log(res.insert_cnt)
// Output
//
// 1000
//
使用分区键
索引和加载集合并插入数据后,就可以使用分区键进行相似性搜索。
有关参数的更多信息,请参阅 search()
中的
有关参数的更多信息,请参阅 search()
有关参数的更多信息,请参阅 SDK 参考资料中的
有关参数的更多信息,请参阅 search()
有关参数的更多信息,请参阅 SDK 参考资料中的
备注
要使用分区键进行相似性搜索,应在搜索请求的布尔表达式中包含以下任一项:
expr='<partition_key>=="xxxx"'
expr='<partition_key> in ["xxx", "xxx"]'
请将<partition_key>
替换为指定为分区键的字段名称。
# 4. Search with partition key
query_vectors = [[0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592]]
res = client.search(
collection_name="test_collection",
data=query_vectors,
filter="color == 'green'",
search_params={"metric_type": "L2", "params": {"nprobe": 10}},
output_fields=["id", "color_tag"],
limit=3
)
print(res)
# Output
#
# [
# [
# {
# "id": 970,
# "distance": 0.5770174264907837,
# "entity": {
# "id": 970,
# "color_tag": "green_9828"
# }
# },
# {
# "id": 115,
# "distance": 0.6898155808448792,
# "entity": {
# "id": 115,
# "color_tag": "green_4073"
# }
# },
# {
# "id": 899,
# "distance": 0.7028976678848267,
# "entity": {
# "id": 899,
# "color_tag": "green_9897"
# }
# }
# ]
# ]
// 4. Search with partition key
List<List<Float>> query_vectors = Arrays.asList(Arrays.asList(0.3580376395471989f, -0.6023495712049978f, 0.18414012509913835f, -0.26286205330961354f, 0.9029438446296592f));
SearchReq searchReq = SearchReq.builder()
.collectionName("test_collection")
.data(query_vectors)
.filter("color == \"green\"")
.topK(3)
.build();
SearchResp searchResp = client.search(searchReq);
System.out.println(JSONObject.toJSON(searchResp));
// Output:
// {"searchResults": [[
// {
// "distance": 1.0586997,
// "id": 414,
// "entity": {}
// },
// {
// "distance": 0.981384,
// "id": 293,
// "entity": {}
// },
// {
// "distance": 0.9548756,
// "id": 325,
// "entity": {}
// }
// ]]}
// 4. Search with partition key
const query_vectors = [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592]
res = await client.search({
collection_name: "test_collection",
data: query_vectors,
filter: "color == 'green'",
output_fields: ["color_tag"],
limit: 3
})
console.log(res.results)
// Output
//
// [
// { score: 2.402090549468994, id: '135', color_tag: 'green_2694' },
// { score: 2.3938629627227783, id: '326', color_tag: 'green_7104' },
// { score: 2.3235254287719727, id: '801', color_tag: 'green_3162' }
// ]
//
典型用例
您可以利用Partition Key功能实现更好的搜索性能并启用多租户功能。具体做法是为每个实体指定一个特定于租户的值作为分区键字段。在搜索或查询集合时,通过在布尔表达式中包含分区键字段,可以根据租户特定值过滤实体。这种方法可确保按租户进行数据隔离,并避免扫描不必要的分区。