过滤搜索
ANN 搜索能找到与指定向量嵌入最相似的向量嵌入。但是,搜索结果不一定总是正确的。您可以在搜索请求中包含过滤条件,以便 Milvus 在进行 ANN 搜索前进行元数据过滤,将搜索范围从整个 Collections 缩小到只搜索符合指定过滤条件的实体。
概述
如果 Collections 包含向量嵌入及其元数据,您可以在 ANN 搜索前过滤元数据,以提高搜索结果的相关性。一旦 Milvus 收到带有过滤条件的搜索请求,它就会将搜索范围限制在符合指定过滤条件的实体内。
过滤搜索
如上图所示,搜索请求携带chunk like % red %
作为过滤条件,表明 Milvus 应在chunk
字段中包含red
的所有实体内进行 ANN 搜索。具体来说,Milvus 会执行以下操作。
过滤符合搜索请求中过滤条件的实体。
在过滤后的实体中进行 ANN 搜索。
返回前 K 个实体。
示例
本节演示如何进行过滤搜索。本节中的代码片段假定您的 Collections 中已包含以下实体。每个实体都有四个字段,即id、向量、颜色和喜欢。
[
{"id": 0, "vector": [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592], "color": "pink_8682", "likes": 165},
{"id": 1, "vector": [0.19886812562848388, 0.06023560599112088, 0.6976963061752597, 0.2614474506242501, 0.838729485096104], "color": "red_7025", "likes": 25},
{"id": 2, "vector": [0.43742130801983836, -0.5597502546264526, 0.6457887650909682, 0.7894058910881185, 0.20785793220625592], "color": "orange_6781", "likes": 764},
{"id": 3, "vector": [0.3172005263489739, 0.9719044792798428, -0.36981146090600725, -0.4860894583077995, 0.95791889146345], "color": "pink_9298", "likes": 234},
{"id": 4, "vector": [0.4452349528804562, -0.8757026943054742, 0.8220779437047674, 0.46406290649483184, 0.30337481143159106], "color": "red_4794", "likes": 122},
{"id": 5, "vector": [0.985825131989184, -0.8144651566660419, 0.6299267002202009, 0.1206906911183383, -0.1446277761879955], "color": "yellow_4222", "likes": 12},
{"id": 6, "vector": [0.8371977790571115, -0.015764369584852833, -0.31062937026679327, -0.562666951622192, -0.8984947637863987], "color": "red_9392", "likes": 58},
{"id": 7, "vector": [-0.33445148015177995, -0.2567135004164067, 0.8987539745369246, 0.9402995886420709, 0.5378064918413052], "color": "grey_8510", "likes": 775},
{"id": 8, "vector": [0.39524717779832685, 0.4000257286739164, -0.5890507376891594, -0.8650502298996872, -0.6140360785406336], "color": "white_9381", "likes": 876},
{"id": 9, "vector": [0.5718280481994695, 0.24070317428066512, -0.3737913482606834, -0.06726932177492717, -0.6980531615588608], "color": "purple_4976", "likes": 765}
]
下面代码片段中的搜索请求包含一个过滤条件和多个输出字段。
from pymilvus import MilvusClient
client = MilvusClient(
uri="http://localhost:19530",
token="root:Milvus"
)
query_vector = [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592]
res = client.search(
collection_name="my_collection",
data=[query_vector],
limit=5,
# highlight-start
filter='color like "red%" and likes > 50',
output_fields=["color", "likes"]
# highlight-end
)
for hits in res:
print("TopK results:")
for hit in hits:
print(hit)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.vector.request.SearchReq
import io.milvus.v2.service.vector.request.data.FloatVec;
import io.milvus.v2.service.vector.response.SearchResp
MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
.uri("http://localhost:19530")
.token("root:Milvus")
.build());
FloatVec queryVector = new FloatVec(new float[]{0.3580376395471989f, -0.6023495712049978f, 0.18414012509913835f, -0.26286205330961354f, 0.9029438446296592f});
SearchReq searchReq = SearchReq.builder()
.collectionName("filtered_search_collection")
.data(Collections.singletonList(queryVector))
.topK(5)
.filter("color like \"red%\" and likes > 50")
.outputFields(Arrays.asList("color", "likes"))
.build();
SearchResp searchResp = client.search(searchReq);
List<List<SearchResp.SearchResult>> searchResults = searchResp.getSearchResults();
for (List<SearchResp.SearchResult> results : searchResults) {
System.out.println("TopK results:");
for (SearchResp.SearchResult result : results) {
System.out.println(result);
}
}
// Output
// TopK results:
// SearchResp.SearchResult(entity={color=red_4794, likes=122}, score=0.5975797, id=4)
// SearchResp.SearchResult(entity={color=red_9392, likes=58}, score=-0.24996188, id=6)
import (
"context"
"log"
"github.com/milvus-io/milvus/client/v2"
"github.com/milvus-io/milvus/client/v2/entity"
)
func ExampleClient_Search_filter() {
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
milvusAddr := "127.0.0.1:19530"
token := "root:Milvus"
cli, err := client.New(ctx, &client.ClientConfig{
Address: milvusAddr,
APIKey: token,
})
if err != nil {
log.Fatal("failed to connect to milvus server: ", err.Error())
}
defer cli.Close(ctx)
queryVector := []float32{0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592}
resultSets, err := cli.Search(ctx, client.NewSearchOption(
"filtered_search_collection", // collectionName
3, // limit
[]entity.Vector{entity.FloatVector(queryVector)},
).WithFilter(`color like "red%" and likes > 50`).WithOutputFields("color", "likes"))
if err != nil {
log.Fatal("failed to perform basic ANN search collection: ", err.Error())
}
for _, resultSet := range resultSets {
log.Println("IDs: ", resultSet.IDs)
log.Println("Scores: ", resultSet.Scores)
}
// Output:
// IDs:
// Scores:
}
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});
const query_vector = [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592]
const res = await client.search({
collection_name: "filtered_search_collection",
data: [query_vector],
limit: 5,
// highlight-start
filters: 'color like "red%" and likes > 50',
output_fields: ["color", "likes"]
// highlight-end
})
export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "quick_setup",
"data": [
[0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592]
],
"annsField": "vector",
"filter": "color like \"red%\" and likes > 50",
"limit": 3,
"outputFields": ["color", "likes"]
}'
# {"code":0,"cost":0,"data":[]}
搜索请求中的过滤条件为color like "red%" and likes > 50
。它使用 and 操作符包含两个条件:第一个条件要求在color
字段中查找值以red
开头的实体,其他条件要求在likes
字段中查找值大于50
的实体。符合这些要求的实体只有两个。当 top-K 设置为3
时,Milvus 将计算这两个实体与查询向量的距离,并将它们作为搜索结果返回。
[
{
"id": 4,
"distance": 0.3345786594834839,
"entity": {
"vector": [0.4452349528804562, -0.8757026943054742, 0.8220779437047674, 0.46406290649483184, 0.30337481143159106],
"color": "red_4794",
"likes": 122
}
},
{
"id": 6,
"distance": 0.6638239834383389,
"entity": {
"vector": [0.8371977790571115, -0.015764369584852833, -0.31062937026679327, -0.562666951622192, -0.8984947637863987],
"color": "red_9392",
"likes": 58
}
},
]
有关元数据过滤中可使用的操作符的更多信息,请参阅元数据过滤。