🚀 Try Zilliz Cloud, the fully managed Milvus, for free—experience 10x faster performance! Try Now>>

Milvus
Zilliz
Home
  • User Guide
  • Home
  • Docs
  • User Guide

  • Schema & Data Fields

  • Analyzer

  • Tokenizers

  • Standard

Standard Tokenizer

The standard tokenizer in Milvus splits text based on spaces and punctuation marks, making it suitable for most languages.

Configuration

To configure an analyzer using the standard tokenizer, set tokenizer to standard in analyzer_params.

analyzer_params = {
    "tokenizer": "standard",
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer", "standard");
const analyzer_params = {
    "tokenizer": "standard",
};
analyzerParams = map[string]any{"tokenizer": "standard"}
# restful
analyzerParams='{
  "tokenizer": "standard"
}'

The standard tokenizer can work in conjunction with one or more filters. For example, the following code defines an analyzer that uses the standard tokenizer and lowercase filter:

analyzer_params = {
    "tokenizer": "standard",
    "filter": ["lowercase"]
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer", "standard");
analyzerParams.put("filter", Collections.singletonList("lowercase"));
const analyzer_params = {
    "tokenizer": "standard",
    "filter": ["lowercase"]
};
analyzerParams = map[string]any{"tokenizer": "standard", "filter": []any{"lowercase"}}
# restful
analyzerParams='{
  "tokenizer": "standard",
  "filter": [
    "lowercase"
  ]
}'

For simpler setup, you may choose to use the standard analyzer, which combines the standard tokenizer with the lowercase filter.

After defining analyzer_params, you can apply them to a VARCHAR field when defining a collection schema. This allows Milvus to process the text in that field using the specified analyzer for efficient tokenization and filtering. For details, refer to Example use.

Examples

Before applying the analyzer configuration to your collection schema, verify its behavior using the run_analyzer method.

Analyzer configuration

analyzer_params = {
    "tokenizer": "standard",
    "filter": ["lowercase"]
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer", "standard");
analyzerParams.put("filter", Collections.singletonList("lowercase"));
// javascript
analyzerParams = map[string]any{"tokenizer": "standard", "filter": []any{"lowercase"}}
# restful

Verification using run_analyzer

from pymilvus import (
    MilvusClient,
)

client = MilvusClient(uri="http://localhost:19530")

# Sample text to analyze
sample_text = "The Milvus vector database is built for scale!"

# Run the standard analyzer with the defined configuration
result = client.run_analyzer(sample_text, analyzer_params)
print("English analyzer output:", result)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.vector.request.RunAnalyzerReq;
import io.milvus.v2.service.vector.response.RunAnalyzerResp;

ConnectConfig config = ConnectConfig.builder()
        .uri("http://localhost:19530")
        .build();
MilvusClientV2 client = new MilvusClientV2(config);

List<String> texts = new ArrayList<>();
texts.add("The Milvus vector database is built for scale!");

RunAnalyzerResp resp = client.runAnalyzer(RunAnalyzerReq.builder()
        .texts(texts)
        .analyzerParams(analyzerParams)
        .build());
List<RunAnalyzerResp.AnalyzerResult> results = resp.getResults();
// javascript
// go
# restful

Expected output

['the', 'milvus', 'vector', 'database', 'is', 'built', 'for', 'scale']

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

Was this page helpful?