LinderaCompatible with Milvus 2.5.11+
The lindera
tokenizer performs dictionary-based morphological analysis. It is a good choice for languages—such as Japanese, Korean, and Chinese—whose words are not separated by spaces.
Prerequisites
To use the lindera
tokenizer, you need to use a specially compiled Milvus version. All dictionaries must be explicitly enabled during compilation to be used.
To enable specific dictionaries, include them in the compilation command:
make milvus TANTIVY_FEATURES=lindera-ipadic,lindera-ko-dic
The complete list of available dictionaries is: lindera-ipadic
, lindera-ipadic-neologd
, lindera-unidic
, lindera-ko-dic
, lindera-cc-cedict
.
For example, to enable all dictionaries:
make milvus TANTIVY_FEATURES=lindera-ipadic,lindera-ipadic-neologd,lindera-unidic,lindera-ko-dic,lindera-cc-cedict
Configuration
To configure an analyzer using the lindera
tokenizer, set tokenizer.type
to lindera
and choose a dictionary with dict_kind
.
analyzer_params = {
"tokenizer": {
"type": "lindera",
"dict_kind": "ipadic"
}
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer",
new HashMap<String, Object>() {{
put("type", "lindera");
put("dict_kind", "ipadic");
}});
analyzerParams = map[string]any{"tokenizer": map[string]any{"type": "lindera", "dict_kind": "ipadic"}}
Parameter |
Description |
---|---|
|
The type of tokenizer. This is fixed to |
|
A dictionary used to define vocabulary. Possible values:
|
After defining analyzer_params
, you can apply them to a VARCHAR
field when defining a collection schema. This allows Milvus to process the text in that field using the specified analyzer for efficient tokenization and filtering. For details, refer to Example use.
Examples
Before applying the analyzer configuration to your collection schema, verify its behavior using the run_analyzer
method.
Analyzer configuration
analyzer_params = {
"tokenizer": {
"type": "lindera",
"dict_kind": "ipadic"
}
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer",
new HashMap<String, Object>() {{
put("type", "lindera");
put("dict_kind", "ipadic");
}});
analyzerParams = map[string]any{"tokenizer": map[string]any{"type": "lindera", "dict_kind": "ipadic"}}
Verification using run_analyzer
Compatible with Milvus 2.5.11+
from pymilvus import (
MilvusClient,
)
client = MilvusClient(uri="http://localhost:19530")
# Sample text to analyze
sample_text = "東京スカイツリーの最寄り駅はとうきょうスカイツリー駅で"
# Run the standard analyzer with the defined configuration
result = client.run_analyzer(sample_text, analyzer_params)
print("Standard analyzer output:", result)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.vector.request.RunAnalyzerReq;
import io.milvus.v2.service.vector.response.RunAnalyzerResp;
ConnectConfig config = ConnectConfig.builder()
.uri("http://localhost:19530")
.build();
MilvusClientV2 client = new MilvusClientV2(config);
List<String> texts = new ArrayList<>();
texts.add("東京スカイツリーの最寄り駅はとうきょうスカイツリー駅で");
RunAnalyzerResp resp = client.runAnalyzer(RunAnalyzerReq.builder()
.texts(texts)
.analyzerParams(analyzerParams)
.build());
List<RunAnalyzerResp.AnalyzerResult> results = resp.getResults();
import (
"context"
"encoding/json"
"fmt"
"github.com/milvus-io/milvus/client/v2/milvusclient"
)
client, err := milvusclient.New(ctx, &milvusclient.ClientConfig{
Address: "localhost:19530",
APIKey: "root:Milvus",
})
if err != nil {
fmt.Println(err.Error())
// handle error
}
bs, _ := json.Marshal(analyzerParams)
texts := []string{"東京スカイツリーの最寄り駅はとうきょうスカイツリー駅で"}
option := milvusclient.NewRunAnalyzerOption(texts).
WithAnalyzerParams(string(bs))
result, err := client.RunAnalyzer(ctx, option)
if err != nil {
fmt.Println(err.Error())
// handle error
}
Expected output
{tokens: ['東京', 'スカイ', 'ツリー', 'の', '最寄り駅', 'は', 'とう', 'きょう', 'スカイ', 'ツリー', '駅', 'で']}