JSON Field
JSON (JavaScript Object Notation) is a lightweight data exchange format that provides a flexible way to store and query complex data structures. In Milvus, you can store additional structured information alongside vector data using JSON fields, enabling advanced searches and queries that combine vector similarity with structured filtering.
JSON fields are ideal for applications that require metadata to optimize retrieval results. For example, in e-commerce, product vectors can be enhanced with attributes like category, price, and brand. In recommendation systems, user vectors can be combined with preferences and demographic information. Below is an example of a typical JSON field:
{
"category": "electronics",
"price": 99.99,
"brand": "BrandA"
}
Add JSON field
To use JSON fields in Milvus, define the relevant field type in the collection schema, setting the datatype
to the supported JSON type, i.e., JSON
.
Here’s how to define a collection schema that includes a JSON field:
from pymilvus import MilvusClient, DataType
client = MilvusClient(uri="http://localhost:19530")
schema = client.create_schema(
auto_id=False,
enable_dynamic_fields=True,
)
schema.add_field(field_name="metadata", datatype=DataType.JSON)
schema.add_field(field_name="pk", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="embedding", datatype=DataType.FLOAT_VECTOR, dim=3)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.common.DataType;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;
MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
.uri("http://localhost:19530")
.build());
CreateCollectionReq.CollectionSchema schema = client.createSchema();
schema.setEnableDynamicField(true);
schema.addField(AddFieldReq.builder()
.fieldName("metadata")
.dataType(DataType.JSON)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("pk")
.dataType(DataType.Int64)
.isPrimaryKey(true)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("embedding")
.dataType(DataType.FloatVector)
.dimension(3)
.build());
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const schema = [
{
name: "metadata",
data_type: DataType.JSON,
},
{
name: "pk",
data_type: DataType.Int64,
is_primary_key: true,
},
{
name: "embedding",
data_type: DataType.FloatVector,
dim: 3,
},
];
export jsonField='{
"fieldName": "metadata",
"dataType": "JSON"
}'
export pkField='{
"fieldName": "pk",
"dataType": "Int64",
"isPrimary": true
}'
export vectorField='{
"fieldName": "embedding",
"dataType": "FloatVector",
"elementTypeParams": {
"dim": 3
}
}'
export schema="{
\"autoID\": false,
\"fields\": [
$jsonField,
$pkField,
$vectorField
]
}"
In this example, we add a JSON field called metadata
to store additional metadata related to vector data, such as product category, price, and brand information.
The primary field and vector field are mandatory when you create a collection. The primary field uniquely identifies each entity, while the vector field is crucial for similarity search. For more details, refer to Primary Field & AutoID, Dense Vector, Binary Vector, or Sparse Vector.
Create collection
When creating a collection, you must create an index for the vector field to ensure retrieval performance. In this example, we use AUTOINDEX
to simplify index setup. For more details, refer to AUTOINDEX.
index_params = client.prepare_index_params()
index_params.add_index(
field_name="embedding",
index_type="AUTOINDEX",
metric_type="COSINE"
)
import io.milvus.v2.common.IndexParam;
import java.util.*;
List<IndexParam> indexes = new ArrayList<>();
indexes.add(IndexParam.builder()
.fieldName("embedding")
.indexType(IndexParam.IndexType.AUTOINDEX)
.metricType(IndexParam.MetricType.COSINE)
.build());
const indexParams = {
index_name: 'embedding_index',
field_name: 'embedding',
metricType: MetricType.CONSINE,
index_type: IndexType.AUTOINDEX,
);
export indexParams='[
{
"fieldName": "embedding",
"metricType": "COSINE",
"indexType": "AUTOINDEX"
}
]'
Use the defined schema and index parameters to create a collection:
client.create_collection(
collection_name="my_json_collection",
schema=schema,
index_params=index_params
)
CreateCollectionReq requestCreate = CreateCollectionReq.builder()
.collectionName("my_json_collection")
.collectionSchema(schema)
.indexParams(indexes)
.build();
client.createCollection(requestCreate);
client.create_collection({
collection_name: "my_json_collection",
schema: schema,
index_params: indexParams
})
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
\"collectionName\": \"my_json_collection\",
\"schema\": $schema,
\"indexParams\": $indexParams
}"
Insert data
After creating the collection, you can insert data that includes JSON fields.
# Data to be inserted
data = [
{
"metadata": {"category": "electronics", "price": 99.99, "brand": "BrandA"},
"pk": 1,
"embedding": [0.12, 0.34, 0.56]
},
{
"metadata": {"category": "home_appliances", "price": 249.99, "brand": "BrandB"},
"pk": 2,
"embedding": [0.56, 0.78, 0.90]
},
{
"metadata": {"category": "furniture", "price": 399.99, "brand": "BrandC"},
"pk": 3,
"embedding": [0.91, 0.18, 0.23]
}
]
# Insert data into the collection
client.insert(
collection_name="your_collection_name",
data=data
)
import com.google.gson.Gson;
import com.google.gson.JsonObject;
import io.milvus.v2.service.vector.request.InsertReq;
import io.milvus.v2.service.vector.response.InsertResp;
List<JsonObject> rows = new ArrayList<>();
Gson gson = new Gson();
rows.add(gson.fromJson("{\"metadata\": {\"category\": \"electronics\", \"price\": 99.99, \"brand\": \"BrandA\"}, \"pk\": 1, \"embedding\": [0.1, 0.2, 0.3]}", JsonObject.class));
rows.add(gson.fromJson("{\"metadata\": {\"category\": \"home_appliances\", \"price\": 249.99, \"brand\": \"BrandB\"}, \"pk\": 2, \"embedding\": [0.4, 0.5, 0.6]}", JsonObject.class));
rows.add(gson.fromJson("{\"metadata\": {\"category\": \"furniture\", \"price\": 399.99, \"brand\": \"BrandC\"}, \"pk\": 3, \"embedding\": [0.7, 0.8, 0.9]}", JsonObject.class));
InsertResp insertR = client.insert(InsertReq.builder()
.collectionName("my_json_collection")
.data(rows)
.build());
const data = [
{
"metadata": {"category": "electronics", "price": 99.99, "brand": "BrandA"},
"pk": 1,
"embedding": [0.12, 0.34, 0.56]
},
{
"metadata": {"category": "home_appliances", "price": 249.99, "brand": "BrandB"},
"pk": 2,
"embedding": [0.56, 0.78, 0.90]
},
{
"metadata": {"category": "furniture", "price": 399.99, "brand": "BrandC"},
"pk": 3,
"embedding": [0.91, 0.18, 0.23]
}
]
client.insert({
collection_name: "my_json_collection",
data: data
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/insert" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"data": [
{
"metadata": {"category": "electronics", "price": 99.99, "brand": "BrandA"},
"pk": 1,
"embedding": [0.12, 0.34, 0.56]
},
{
"metadata": {"category": "home_appliances", "price": 249.99, "brand": "BrandB"},
"pk": 2,
"embedding": [0.56, 0.78, 0.90]
},
{
"metadata": {"category": "furniture", "price": 399.99, "brand": "BrandC"},
"pk": 3,
"embedding": [0.91, 0.18, 0.23]
}
],
"collectionName": "my_json_collection"
}'
In this example:
Each data entry includes a primary field (
pk
),metadata
as a JSON field to store information such as product category, price, and brand.embedding
is a 3-dimensional vector field used for vector similarity search.
Search and query
JSON fields allow scalar filtering during searches, enhancing Milvus’s vector search capabilities. You can query based on JSON properties alongside vector similarity.
Filter queries
You can filter data based on JSON properties, such as matching specific values or checking if a number falls within a certain range.
filter = 'metadata["category"] == "electronics" and metadata["price"] < 150'
res = client.query(
collection_name="my_json_collection",
filter=filter,
output_fields=["metadata"]
)
print(res)
# Output
# data: ["{'metadata': {'category': 'electronics', 'price': 99.99, 'brand': 'BrandA'}, 'pk': 1}"]
import io.milvus.v2.service.vector.request.QueryReq;
import io.milvus.v2.service.vector.response.QueryResp;
String filter = "metadata[\"category\"] == \"electronics\" and metadata[\"price\"] < 150";
QueryResp resp = client.query(QueryReq.builder()
.collectionName("my_json_collection")
.filter(filter)
.outputFields(Collections.singletonList("metadata"))
.build());
System.out.println(resp.getQueryResults());
// Output
//
// [QueryResp.QueryResult(entity={metadata={"category":"electronics","price":99.99,"brand":"BrandA"}, pk=1})]
client.query({
collection_name: 'my_scalar_collection',
filter: 'metadata["category"] == "electronics" and metadata["price"] < 150',
output_fields: ['metadata']
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "my_json_collection",
"filter": "metadata[\"category\"] == \"electronics\" and metadata[\"price\"] < 150",
"outputFields": ["metadata"]
}'
{"code":0,"cost":0,"data":[{"metadata":"{\"category\": \"electronics\", \"price\": 99.99, \"brand\": \"BrandA\"}","pk":1}]}
In the above query, Milvus filters out entities where the metadata
field has a category of "electronics"
and a price below 150, returning entities that match these criteria.
Vector search with JSON filtering
By combining vector similarity with JSON filtering, you can ensure that the retrieved data not only matches semantically but also meets specific business conditions, making the search results more precise and aligned with user needs.
filter = 'metadata["brand"] == "BrandA"'
res = client.search(
collection_name="my_json_collection",
data=[[0.3, -0.6, 0.1]],
limit=5,
search_params={"params": {"nprobe": 10}},
output_fields=["metadata"],
filter=filter
)
print(res)
# Output
# data: ["[{'id': 1, 'distance': -0.2479381263256073, 'entity': {'metadata': {'category': 'electronics', 'price': 99.99, 'brand': 'BrandA'}}}]"]
import io.milvus.v2.service.vector.request.SearchReq;
import io.milvus.v2.service.vector.response.SearchResp;
String filter = "metadata[\"brand\"] == \"BrandA\"";
SearchResp resp = client.search(SearchReq.builder()
.collectionName("my_json_collection")
.annsField("embedding")
.data(Collections.singletonList(new FloatVec(new float[]{0.3f, -0.6f, 0.1f})))
.topK(5)
.outputFields(Collections.singletonList("metadata"))
.filter(filter)
.build());
System.out.println(resp.getSearchResults());
// Output
//
// [[SearchResp.SearchResult(entity={metadata={"category":"electronics","price":99.99,"brand":"BrandA"}}, score=-0.2364331, id=1)]]
client.search({
collection_name: 'my_json_collection',
data: [0.3, -0.6, 0.1],
limit: 5,
output_fields: ['metadata'],
filter: 'metadata["category"] == "electronics" and metadata["price"] < 150',
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "my_json_collection",
"data": [
[0.3, -0.6, 0.1]
],
"annsField": "embedding",
"limit": 5,
"searchParams":{
"params":{"nprobe":10}
},
"outputFields": ["metadata"],
"filter": "metadata[\"brand\"] == \"BrandA\""
}'
## {"code":0,"cost":0,"data":[{"distance":-0.24793813,"id":1,"metadata":"{\"category\": \"electronics\", \"price\": 99.99, \"brand\": \"BrandA\"}"}]}
In this example, Milvus returns the top 5 entities most similar to the query vector, with the metadata
field containing a brand of "BrandA"
.
Additionally, Milvus supports advanced JSON filtering operators such as JSON_CONTAINS
, JSON_CONTAINS_ALL
, and JSON_CONTAINS_ANY
, which can further enhance query capabilities. For more details, refer to Metadata Filtering.
Limits
Indexing Limitations: Due to the complexity of data structures, indexing JSON fields is not supported.
Data Type Matching: If a JSON field’s key value is an integer or floating point, it can only be compared with another integer or float key or
INT32/64
orFLOAT32/64
fields. If the key value is a string (VARCHAR
), it can only be compared with another string key.Naming Restrictions: When naming JSON keys, it is recommended to use only letters, numeric characters, and underscores, as other characters may cause issues during filtering or searching.
Handling String Values: For string values (
VARCHAR
), Milvus stores JSON field strings as-is without semantic conversion. For example:'a"b'
,"a'b"
,'a\\'b'
, and"a\\"b"
are stored as entered; however,'a'b'
and"a"b"
are considered invalid.Handling Nested Dictionaries: Any nested dictionaries within JSON field values are treated as strings.