milvus-logo
LFAI
Home
  • Administration Guide

Milvus Metrics Dashboard

Milvus outputs a list of detailed time-series metrics during runtime. You can use Prometheus and Grafana to visualize the metrics. This topic introduces the monitoring metrics displayed in the Grafana Milvus Dashboard.

The time unit in this topic is milliseconds. And “99th percentile” in this topic refers to the fact that 99 percent of the time statistics are controlled within a certain value.

We recommend reading Milvus monitoring framework overview to understand Prometheus metrics first.

Proxy

PanelPanel descriptionPromQL (Prometheus query language)The Milvus metrics usedMilvus metrics description
Search Vector Count RateThe average number of vectors queried per second by each proxy within the past two minutes.sum(increase(milvus_proxy_search_vectors_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120) by (pod, node_id)milvus_proxy_search_vectors_countThe accumulated number of vectors queried.
Insert Vector Count RateThe average number of vectors inserted per second by each proxy within the past two minutes.sum(increase(milvus_proxy_insert_vectors_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120) by (pod, node_id)milvus_proxy_insert_vectors_countThe accumulated number of vectors inserted.
Search LatencyThe average latency and the 99th percentile of the latency of receiving search and query requests by each proxy within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, query_type, pod, node_id) (rate(milvus_proxy_sq_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_proxy_sq_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id, query_type) / sum(increase(milvus_proxy_sq_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id, query_type)
milvus_proxy_sq_latencyThe latency of search and query requests.
Collection Search LatencyThe average latency and the 99th percentile of the latency of receiving search and query requests to a specific collection by each proxy within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, query_type, pod, node_id) (rate(milvus_proxy_collection_sq_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace", collection_name=~"$collection"}[2m])))
avg:
sum(increase(milvus_proxy_collection_sq_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace", collection_name=~"$collection"}[2m])) by (pod, node_id, query_type) / sum(increase(milvus_proxy_collection_sq_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace", collection_name=~"$collection"}[2m])) by (pod, node_id, query_type)
milvus_proxy_collection_sq_latency_sumThe latency of search and query requests to a specific collection
Mutation LatencyThe average latency and the 99th percentile of the latency of receiving mutation requests by each proxy within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, msg_type, pod, node_id) (rate(milvus_proxy_mutation_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_proxy_mutation_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id, msg_type) / sum(increase(milvus_proxy_mutation_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id, msg_type)
milvus_proxy_mutation_latency_sumThe latency of mutation requests.
Collection Mutation LatencyThe average latency and the 99th percentile of the latency of receiving mutation requests to a specific collection by each proxy within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, query_type, pod, node_id) (rate(milvus_proxy_collection_sq_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace", collection_name=~"$collection"}[2m])))
avg:
sum(increase(milvus_proxy_collection_sq_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace", collection_name=~"$collection"}[2m])) by (pod, node_id, query_type) / sum(increase(milvus_proxy_collection_sq_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace", collection_name=~"$collection"}[2m])) by (pod, node_id, query_type)
milvus_proxy_collection_sq_latency_sumThe latency of mutation requests to a specific collection
Wait Search Result LatencyThe average latency and the 99th percentile of the latency between sending search and query requests and receiving results by proxy within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, query_type, pod, node_id) (rate(milvus_proxy_sq_wait_result_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_proxy_sq_wait_result_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id, query_type) / sum(increase(milvus_proxy_sq_wait_result_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id, query_type)
milvus_proxy_sq_wait_result_latencyThe latency between sending search and query requests and receiving results.
Reduce Search Result LatencyThe average latency and the 99th percentile of the latency of aggregating search and query results by proxy within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, query_type, pod, node_id) (rate(milvus_proxy_sq_reduce_result_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_proxy_sq_reduce_result_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id, query_type) / sum(increase(milvus_proxy_sq_reduce_result_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id, query_type)
milvus_proxy_sq_reduce_result_latencyThe latency of aggregating search and query results returned by each query node.
Decode Search Result LatencyThe average latency and the 99th percentile of the latency of decoding search and query results by proxy within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, query_type, pod, node_id) (rate(milvus_proxy_sq_decode_result_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_proxy_sq_decode_result_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id, query_type) / sum(increase(milvus_proxy_sq_decode_resultlatency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id, query_type)
milvus_proxy_sq_decode_result_latencyThe latency of decoding each search and query result.
Msg Stream Object NumThe average, maximum, and minimum number of the msgstream objects created by each proxy on its corresponding physical topic within the past two minutes.avg(milvus_proxy_msgstream_obj_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id) max(milvus_proxy_msgstream_obj_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id) min(milvus_proxy_msgstream_obj_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_proxy_msgstream_obj_numThe number of msgstream objects created on each physical topic.
Mutation Send LatencyThe average latency and the 99th percentile of the latency of sending insertion or deletion requests by each proxy within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, msg_type, pod, node_id) (rate(milvus_proxy_mutation_send_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_proxy_mutation_send_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id, msg_type) / sum(increase(milvus_proxy_mutation_send_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id, msg_type)
milvus_proxy_mutation_send_latencyThe latency of sending insertion or deletion requests.
Cache Hit RateThe average cache hit rate of operations including GeCollectionID, GetCollectionInfo, and GetCollectionSchema per second within the past two minutes.sum(increase(milvus_proxy_cache_hit_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace", cache_state="hit"}[2m])/120) by(cache_name, pod, node_id) / sum(increase(milvus_proxy_cache_hit_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120) by(cache_name, pod, node_id)milvus_proxy_cache_hit_countThe statistics of hit and failure rate of each cache reading operation.
Cache Update LatencyThe average latency and the 99th percentile of cache update latency by proxy within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_proxy_cache_update_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_proxy_cache_update_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id) / sum(increase(milvus_proxy_cache_update_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id)
milvus_proxy_cache_update_latencyThe latency of updating cache each time.
Sync TimeThe average, maximum, and minimum number of epoch time synced by each proxy in its corresponding physical channel.avg(milvus_proxy_sync_epoch_time{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id) max(milvus_proxy_sync_epoch_time{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id) min(milvus_proxy_sync_epoch_time{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_proxy_sync_epoch_timeEach physical channel’s epoch time (Unix time, the milliseconds passed ever since January 1, 1970).
There is a default ChannelName apart from the physical channels.
Apply PK LatencyThe average latency and the 99th percentile of primary key application latency by each proxy within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_proxy_apply_pk_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_proxy_apply_pk_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id) / sum(increase(milvus_proxy_apply_pk_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id)
milvus_proxy_apply_pk_latencyThe latency of applying primary key.
Apply Timestamp LatencyThe average latency and the 99th percentile of timestamp application latency by each proxy within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_proxy_apply_timestamp_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_proxy_apply_timestamp_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id) / sum(increase(milvus_proxy_apply_timestamp_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id)
milvus_proxy_apply_timestamp_latencyThe latency of applying timestamp.
Request Success RateThe number of successful requests received per second by each proxy, with a detailed breakdown of each request type. Possible request types are DescribeCollection, DescribeIndex, GetCollectionStatistics, HasCollection, Search, Query, ShowPartitions, Insert, etc.
sum(increase(milvus_proxy_req_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace", status="success"}[2m])/120) by(function_name, pod, node_id)milvus_proxy_req_countThe number of all types of receiving requests
Request Failed RateThe number of failed requests received per second by each proxy, with a detailed breakdown of each request type. Possible request types are DescribeCollection, DescribeIndex, GetCollectionStatistics, HasCollection, Search, Query, ShowPartitions, Insert, etc.
sum(increase(milvus_proxy_req_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace", status="fail"}[2m])/120) by(function_name, pod, node_id)milvus_proxy_req_countThe number of all types of receiving requests
Request LatencyThe average latency and the 99th percentile of the latency of all types of receiving requests by each proxyp99:
histogram_quantile(0.99, sum by (le, pod, node_id, function_name) (rate(milvus_proxy_req_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_proxy_req_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id, function_name) / sum(increase(milvus_proxy_req_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (pod, node_id, function_name)
milvus_proxy_req_latencyThe latency of all types of receiving requests
Insert/Delete Request Byte RateThe number of bytes of insert and delete requests received per second by proxy within the past two minutes.sum(increase(milvus_proxy_receive_bytes_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120) by(pod, node_id)milvus_proxy_receive_bytes_countThe count of insert and delete requests.
Send Byte RateThe number of bytes per second sent back to the client while each proxy is responding to search and query requests within the past two minutes.sum(increase(milvus_proxy_send_bytes_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120) by(pod, node_id)milvus_proxy_send_bytes_countThe number of bytes sent back to the client while each proxy is responding to search and query requests.

Root coordinator

PanelPanel descriptionPromQL (Prometheus query language)The Milvus metrics usedMilvus metrics description
Proxy Node NumThe number of proxies created.sum(milvus_rootcoord_proxy_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_rootcoord_proxy_numThe number of proxies.
Sync TimeThe average, maximum, and minimum number of epoch time synced by each root coord in each physical channel (PChannel).avg(milvus_rootcoord_sync_epoch_time{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance) max(milvus_rootcoord_sync_epoch_time{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance) min(milvus_rootcoord_sync_epoch_time{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_rootcoord_sync_epoch_timeEach physical channel’s epoch time (Unix time, the milliseconds passed ever since January 1, 1970).
DDL Request RateThe status and number of DDL requests per second within the past two minutes.sum(increase(milvus_rootcoord_ddl_req_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120) by (status, function_name)milvus_rootcoord_ddl_req_countThe total number of DDL requests including CreateCollection, DescribeCollection, DescribeSegments, HasCollection, ShowCollections, ShowPartitions, and ShowSegments.
DDL Request LatencyThe average latency and the 99th percentile of DDL request latency within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, function_name) (rate(milvus_rootcoord_ddl_req_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_rootcoord_ddl_req_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (function_name) / sum(increase(milvus_rootcoord_ddl_req_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by (function_name)
milvus_rootcoord_ddl_req_latencyThe latency of all types of DDL requests.
Sync Timetick LatencyThe average latency and the 99th percentile of the time used by root coord to sync all timestamp to PChannel within the past two minutes.p99:
histogram_quantile(0.99, sum by (le) (rate(milvus_rootcoord_sync_timetick_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_rootcoord_sync_timetick_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) / sum(increase(milvus_rootcoord_sync_timetick_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m]))
milvus_rootcoord_sync_timetick_latencythe time used by root coord to sync all timestamp to pchannel.
ID Alloc RateThe number of IDs assigned by root coord per second within the past two minutes.sum(increase(milvus_rootcoord_id_alloc_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120)milvus_rootcoord_id_alloc_countThe accumulated number of IDs assigned by root coord.
TimestampThe latest timestamp of root coord.milvus_rootcoord_timestamp{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}milvus_rootcoord_timestampThe latest timestamp of root coord.
Timestamp SavedThe pre-assigned timestamps that root coord saves in meta storage.milvus_rootcoord_timestamp_saved{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}milvus_rootcoord_timestamp_savedThe pre-assigned timestamps that root coord saves in meta storage.
The timestamps are assigned 3 seconds earlier. And the timestamp is updated and saved in meta storage every 50 millisecond.
Collection NumThe total number of collections.sum(milvus_rootcoord_collection_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_rootcoord_collection_numThe total number of collections existing in Milvus currently.
Partition NumThe total number of partitions.sum(milvus_rootcoord_partition_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_rootcoord_partition_numThe total number of partitions existing in Milvus currently.
DML Channel NumThe total number of DML channels.sum(milvus_rootcoord_dml_channel_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_rootcoord_dml_channel_numThe total number of DML channels existing in Milvus currently.
Msgstream NumThe total number of msgstreams.sum(milvus_rootcoord_msgstream_obj_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_rootcoord_msgstream_obj_numThe total number of msgstreams in Milvus currently.
Credential NumThe total number of credentials.sum(milvus_rootcoord_credential_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_rootcoord_credential_numThe total number of credentials in Milvus currently.
Time Tick DelayThe sum of the maximum time tick delay of the flow graphs on all DataNodes and QueryNodes.sum(milvus_rootcoord_time_tick_delay{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_rootcoord_time_tick_delayThe maximum time tick delay of the flow graphs on each DataNode and QueryNode.

Query coordinator

PanelPanel descriptionPromQL (Prometheus query language)The Milvus metrics usedMilvus metrics description
Collection Loaded NumThe number of collections that are currently loaded into memory.sum(milvus_querycoord_collection_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_querycoord_collection_numThe number of collections that are currently loaded by Milvus.
Entity Loaded NumThe number of entities that are currently loaded into memory.sum(milvus_querycoord_entity_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_querycoord_entitiy_numThe number of entities that are currently loaded by Milvus.
Load Request RateThe number of load requests per second within the past two minutes.sum(increase(milvus_querycoord_load_req_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])120) by (status)milvus_querycoord_load_req_countThe accumulated number of load requests.
Release Request RateThe number of release requests per second within the past two minutes.sum(increase(milvus_querycoord_release_req_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120) by (status)milvus_querycoord_release_req_countThe accumulated number of release requests.
Load Request LatencyThe average latency and the 99th percentile of load request latency within the past two minutes.p99:
histogram_quantile(0.99, sum by (le) (rate(milvus_querycoord_load_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_querycoord_load_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) / sum(increase(milvus_querycoord_load_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m]))
milvus_querycoord_load_latencyThe time used to complete a load request.
Release Request LatencyThe average latency and the 99th percentile of release request latency within the past two minutes.p99:
histogram_quantile(0.99, sum by (le) (rate(milvus_querycoord_release_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_querycoord_release_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) / sum(increase(milvus_querycoord_release_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m]))
milvus_querycoord_release_latencyThe time used to complete a release request.
Sub-Load TaskThe number of sub load tasks.sum(milvus_querycoord_child_task_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_querycoord_child_task_numThe number of sub load tasks.
A query coord splits a load request into multiple sub load tasks.
Parent Load TaskThe number of parent load tasks.sum(milvus_querycoord_parent_task_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_querycoord_parent_task_numThe number of sub load tasks.
Each load request corresponds to a parent task in the task queue.
Sub-Load Task LatencyThe average latency and the 99th percentile of the latency of a sub load task within the past two minutes.p99:
histogram_quantile(0.99, sum by (le) (rate(milvus_querycoord_child_task_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_querycoord_child_task_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) / sum(increase(milvus_querycoord_child_task_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) namespace"}[2m])))
milvus_querycoord_child_task_latencyThe latency to complete a sub load task.
Query Node NumThe number of query nodes managed by query coord.sum(milvus_querycoord_querynode_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_querycoord_querynode_numThe number of query nodes managed by query coord.

Query node

PanelPanel descriptionPromQL (Prometheus query language)The Milvus metrics usedMilvus metrics description
Collection Loaded NumThe number of collections loaded into memory by each query node.sum(milvus_querynode_collection_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_querynode_collection_numThe number of collection loaded by each query node.
Partition Loaded NumThe number of partitions loaded into memory by each query node.sum(milvus_querynode_partition_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_querynode_partition_numThe number of partitions loaded by each query node.
Segment Loaded NumThe number of segments loaded into memory by each query node.sum(milvus_querynode_segment_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_querynode_segment_numThe number of segments loaded by each query node.
Queryable Entity NumThe number of queryable and searchable entities on each query node.sum(milvus_querynode_entity_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_querynode_entity_numThe number of queryable and searchable entities on each query node.
DML Virtual ChannelThe number of DML virtual channels watched by each query node.sum(milvus_querynode_dml_vchannel_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_querynode_dml_vchannel_numThe number of DML virtual channels watched by each query node.
Delta Virtual ChannelThe number of delta channels watched by each query node.sum(milvus_querynode_delta_vchannel_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_querynode_delta_vchannel_numThe number of delta channels watched by each query node.
Consumer NumThe number of consumers in each query node.sum(milvus_querynode_consumer_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_querynode_consumer_numThe number of consumers in each query node.
Search Request RateThe total number of search and query requests received per second by each query node and the number of successful search and query requests within the past two minutes.sum(increase(milvus_querynode_sq_req_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120) by (query_type, status, pod, node_id)milvus_querynode_sq_req_countThe accumulated number of search and query requests.
Search Request LatencyThe average latency and the 99th percentile of the time used in search and query requests by each query node within the past two minutes.
This panel displays the latency of search and query requests whose status are “success” or "total".
p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_querynode_sq_req_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_querynode_sq_req_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id, query_type) / sum(increase(milvus_querynode_sq_req_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id, query_type)
milvus_querynode_sq_req_latencyThe search request latency of query node.
Search in Queue LatencyThe average latency and the 99th percentile of the latency of search and query requests in queue within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id, query_type) (rate(milvus_querynode_sq_queue_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_querynode_sq_queue_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id, query_type) / sum(increase(milvus_querynode_sq_queue_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id, query_type)
milvus_querynode_sq_queue_latencyThe latency of the search and query requests received by query node.
Search Segment LatencyThe average latency and the 99th percentile of the time each query node takes to search and query a segment within the past two minutes.
The status of a segment can be sealed or growing.
p99:
histogram_quantile(0.99, sum by (le, query_type, segment_state, pod, node_id) (rate(milvus_querynode_sq_segment_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_querynode_sq_segment_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id, query_type, segment_state) / sum(increase(milvus_querynode_sq_segment_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id, query_type, segment_state)
milvus_querynode_sq_segment_latencyThe time each query node takes to search and query each segment.
Segcore Request LatencyThe average latency and the 99th percentile of the time each query node takes to search and query in segcore within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, query_type, pod, node_id) (rate(milvus_querynode_sq_core_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_querynode_sq_core_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id, query_type) / sum(increase(milvus_querynode_sq_core_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id, query_type)
milvus_querynode_sq_core_latencyThe time each query node takes to search and query in segcore.
Search Reduce LatencyThe average latency and the 99th percentile of the time used by each query node during the reduce stage of a search or query within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id, query_type) (rate(milvus_querynode_sq_reduce_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_querynode_sq_reduce_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id, query_type) / sum(increase(milvus_querynode_sq_reduce_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id, query_type)
milvus_querynode_sq_reduce_latencyThe time each query spends during the stage of reduce.
Load Segment LatencyThe average latency and the 99th percentile of the time each query node takes to load a segment in the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_querynode_load_segment_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_querynode_load_segment_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id) / sum(increase(milvus_querynode_load_segment_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id)
milvus_querynode_load_segment_latency_bucketThe time each query node takes to load a segment.
Flowgraph NumThe number of flowgraphs in each query node.sum(milvus_querynode_flowgraph_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_querynode_flowgraph_numThe number of flowgraphs in each query node.
Unsolved Read Task LengthThe length of the queue of unsolved read requests in each query node.sum(milvus_querynode_read_task_unsolved_len{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_querynode_read_task_unsolved_lenThe length of the queue of unsolved read requests.
Ready Read Task LengthThe length of the queue of read requests to be executed in each query node.sum(milvus_querynode_read_task_ready_len{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_querynode_read_task_ready_lenThe length of the queue of read requests to be executed.
Parallel Read Task NumThe number of concurrent read requests currently executed in each query node.sum(milvus_querynode_read_task_concurrency{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_querynode_read_task_concurrencyThe number of concurrent read requests currently executed.
Estimate CPU UsageThe CPU usage by each query node estimated by the scheduler.sum(milvus_querynode_estimate_cpu_usage{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_querynode_estimate_cpu_usageThe CPU usage by each query node estimated by the scheduler.
When the value is 100, this means a whole virtual CPU (vCPU) is used.
Search Group SizeThe average number and the 99th percentile of the search group size (i.e. The total number of original search requests in the combined search requests executed by each query node) within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_querynode_search_group_size_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_querynode_search_group_size_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id) / sum(increase(milvus_querynode_search_group_size_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id)
milvus_querynode_load_segment_latency_bucketThe number of original search tasks among the combined search tasks from different buckets (i.e. The search group size).
Search NQThe average number and the 99th percentile of the number of queries (NQ) done while each query node executes search requests within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_querynode_search_group_size_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_querynode_search_group_size_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id) / sum(increase(milvus_querynode_search_group_size_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id)
milvus_querynode_load_segment_latency_bucketThe number of queries (NQ) of search requests.
Search Group NQThe average number and the 99th percentile of NQ of search requests combined and executed by each query node within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_querynode_search_group_nq_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_querynode_search_group_nq_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id) / sum(increase(milvus_querynode_search_group_nq_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id)
milvus_querynode_load_segment_latency_bucketThe NQ of search requests combined from different buckets.
Search Top_KThe average number and the 99th percentile of the Top_K of search requests executed by each query node within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_querynode_search_topk_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_querynode_search_topk_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id) / sum(increase(milvus_querynode_search_topk_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id)
milvus_querynode_load_segment_latency_bucketThe Top_K of search requests.
Search Group Top_KThe average number and the 99th percentile of the Top_K of search requests combined and executed by each query node within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_querynode_search_group_topk_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_querynode_search_group_topk_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id) / sum(increase(milvus_querynode_search_group_topk_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id)
milvus_querynode_load_segment_latency_bucketThe Top_K of search requests combined from different buckets .
Evicted Read Requests RateThe number of read requests evicted per second by each query node within the past two minutes.sum(increase(milvus_querynode_read_evicted_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120) by (pod, node_id)milvus_querynode_sq_req_countThe accumulated number of read requests evicted by query node due to traffic restriction.

Data coordinator

PanelPanel descriptionPromQL (Prometheus query language)The Milvus metrics usedMilvus metrics description
Data Node NumThe number of data nodes managed by data coord.sum(milvus_datacoord_datanode_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_datacoord_datanode_numThe number of data nodes managed by data coord.
Segment NumThe number of all types of segments recorded in metadata by data coord.sum(milvus_datacoord_segment_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (segment_state)milvus_datacoord_segment_numThe number of all types of segments recorded in metadata by data coord.
Types of segment include: dropped, flushed, flushing, growing, and sealed.
Collection NumThe number of collections recorded in metadata by data coord.sum(milvus_datacoord_collection_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_datacoord_collection_numThe number of collections recorded in metadata by data coord.
Stored RowsThe accumulated number of rows of valid and flushed data in data coord.sum(milvus_datacoord_stored_rows_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_datacoord_stored_rows_numThe accumulated number of rows of valid and flushed data in data coord.
Stored Rows RateThe average number of rows flushed per second within the past two minutes.sum(increase(milvus_datacoord_stored_rows_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120) by (pod, node_id)milvus_datacoord_stored_rows_countThe accumulated number of rows flushed by data coord.
Sync TimeThe average, maximum, and minimum number of epoch time synced by data coord in each physical channel.avg(milvus_datacoord_sync_epoch_time{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance) max(milvus_datacoord_sync_epoch_time{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance) min(milvus_datacoord_sync_epoch_time{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_datacoord_sync_epoch_timeEach physical channel’s epoch time (Unix time, the milliseconds passed ever since January 1, 1970).
Stored Binlog SizeThe total size of stored binlog.sum(milvus_datacoord_stored_binlog_size{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_datacoord_stored_binlog_sizeThe total size of binlog stored in Milvus.

Data node

PanelPanel descriptionPromQL (Prometheus query language)The Milvus metrics usedMilvus metrics description
Flowgraph NumThe number of flowgraph objects that correspond to each data node.sum(milvus_datanode_flowgraph_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_datanode_flowgraph_numThe number of flowgraph objects.
Each shard in a collection corresponds to a flowgraph object.
Msg Rows Consume RateThe number of rows of streaming messages consumed per second by each data node within the past two minutes.sum(increase(milvus_datanode_msg_rows_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120) by (msg_type, pod, node_id)milvus_datanode_msg_rows_countThe number of rows of streaming messages consumed.
Currently, streaming messages counted by data node only include insertion and deletion messages.
Flush Data Size RateThe size of each flushed message recorded per second by each data node within the past two minutes.sum(increase(milvus_datanode_flushed_data_size{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120) by (msg_type, pod, node_id)milvus_datanode_flushed_data_sizeThe size of each flushed message.
Currently, streaming messages counted by data node only include insertion and deletion messages.
Consumer NumThe number of consumers created on each data node.sum(milvus_datanode_consumer_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_datanode_consumer_numThe number of consumers created on each data node.
Each flowgraph corresponds to a consumer.
Producer NumThe number of producers created on each data node.sum(milvus_datanode_producer_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_datanode_producer_numThe number of consumers created on each data node.
Each shard in a collection corresponds to a delta channel producer and a timetick channel producer.
Sync TimeThe average, maximum, and minimum number of epoch time synced by each data node in all physical topics.avg(milvus_datanode_sync_epoch_time{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id) max(milvus_datanode_sync_epoch_time{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id) min(milvus_datanode_sync_epoch_time{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_datanode_sync_epoch_timeThe epoch time (Unix time, the milliseconds passed ever since January 1, 1970.) of each physical topic on a data node.
Unflushed Segment NumThe number of unflushed segments created on each data node.sum(milvus_datanode_unflushed_segment_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (pod, node_id)milvus_datanode_unflushed_segment_numThe number of unflushed segments created on each data node.
Encode Buffer LatencyThe average latency and the 99th percentile of the time used to encode a buffer by each data node within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_datanode_encode_buffer_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_datanode_encode_buffer_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id) / sum(increase(milvus_datanode_encode_buffer_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id)
milvus_datanode_encode_buffer_latencyThe time each data node takes to encode a buffer.
Save Data LatencyThe average latency and the 99th percentile of the time used to write a buffer into the storage layer by each data node within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_datanode_save_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_datanode_save_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id) / sum(increase(milvus_datanode_save_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id)
milvus_datanode_save_latencyThe time each data node takes to write a buffer into the storage layer.
Flush Operate RateThe number of times each data node flushes a buffer per second within the past two minutes.sum(increase(milvus_datanode_flush_buffer_op_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120) by (status, pod, node_id)milvus_datanode_flush_buffer_op_countThe accumulated number of times a data node flushes a buffer.
Autoflush Operate RateThe number of times each data node auto-flushes a buffer per second within the past two minutes.sum(increase(milvus_datanode_autoflush_buffer_op_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120) by (status, pod, node_id)milvus_datanode_autoflush_buffer_op_countThe accumulated number of times a data node auto-flushes a buffer.
Flush Request RateThe number of times each data node receives a buffer flush request per second within the past two minute.sum(increase(milvus_datanode_flush_req_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120) by (status, pod, node_id)milvus_datanode_flush_req_countThe accumulated number of times a data node receives a flush request from a data coord.
Compaction LatencyThe average latency and the 99 the percentile of the time each data node takes to execute a compaction task within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_datanode_compaction_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_datanode_compaction_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id) / sum(increase(milvus_datanode_compaction_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id)
milvus_datanode_compaction_latencyThe time each data node takes to execute a compaction task.

Index coordinator

PanelPanel descriptionPromQL (Prometheus query language)The Milvus metrics usedMilvus metrics description
Index Request RateThe average number of index building requests received per second within the past two minutes.sum(increase(milvus_indexcoord_indexreq_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120) by (status)milvus_indexcoord_indexreq_countThe number of index building requests received.
Index Task CountThe count of all indexing tasks recorded in index metadata.sum(milvus_indexcoord_indextask_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (index_task_status)milvus_indexcoord_indextask_countThe count of all indexing tasks recorded in index metadata.
Index Node NumThe number of managed index nodes.sum(milvus_indexcoord_indexnode_num{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}) by (app_kubernetes_io_instance)milvus_indexcoord_indexnode_numThe number of managed index nodes.

Index node

PanelPanel descriptionPromQL (Prometheus query language)The Milvus metrics usedMilvus metrics description
Index Task RateThe average number of index building tasks received by each index node per second within the past two minutes.sum(increase(milvus_indexnode_index_task_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])/120) by (status, pod, node_id)milvus_indexnode_index_task_countThe number of index building tasks received.
Load Field LatencyThe average latency and the 99th percentile of the time used by each index node to load segment field data each time within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_indexnode_load_field_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_indexnode_load_field_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id) / sum(increase(milvus_indexnode_load_field_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id)
milvus_indexnode_load_field_latencyThe time used by index node to load segment field data.
Decode Field LatencyThe average latency and the 99th percentile of the time used by each index node to encode field data each time within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_indexnode_decode_field_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_indexnode_decode_field_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id) / sum(increase(milvus_indexnode_decode_field_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id)
milvus_indexnode_decode_field_latencyThe time used to decode field data.
Build Index LatencyThe average latency and the 99th percentile of the time used by each index node to build indexes within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_indexnode_build_index_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_indexnode_build_index_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id) / sum(increase(milvus_indexnode_build_index_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id)
milvus_indexnode_build_index_latencyThe time used to build indexes.
Encode Index LatencyThe average latency and the 99th percentile of the time used by each index node to encode index files within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_indexnode_encode_index_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_indexnode_encode_index_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id) / sum(increase(milvus_indexnode_encode_index_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id)
milvus_indexnode_encode_index_latencyThe time used to encode index files.
Save Index LatencyThe average latency and the 99th percentile of the time used by each index node to save index files within the past two minutes.p99:
histogram_quantile(0.99, sum by (le, pod, node_id) (rate(milvus_indexnode_save_index_latency_bucket{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])))
avg:
sum(increase(milvus_indexnode_save_index_latency_sum{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id) / sum(increase(milvus_indexnode_save_index_latency_count{app_kubernetes_io_instance=~"$instance", app_kubernetes_io_name="$app_name", namespace="$namespace"}[2m])) by(pod, node_id)
milvus_indexnode_save_index_latencyThe time used to save index files.

Table of contents
Feedback

Was this page helpful?