milvus-logo
LFAI
フロントページへ
  • ユーザーガイド

クエリー

MilvusではANN検索だけでなく、クエリーによるメタデータのフィルタリングにも対応しています。このページでは、Query、Get、QueryIteratorを使ってメタデータフィルタリングを行う方法を紹介します。

概要

コレクションには様々なタイプのスカラーフィールドを格納することができます。Milvusでは、1つまたは複数のスカラーフィールドに基づいてエンティティをフィルタリングすることができます。Milvusには3種類のクエリがあります:Query、Get、QueryIterator です。下の表はこれら3つのクエリタイプを比較したものです。

取得

クエリー

QueryIterator

適用可能なシナリオ

指定した主キーを保持するエンティティを検索する。

カスタム・フィルタリング条件を満たすエンティティのすべてまたは指定数を検索する。

ページ分割されたクエリで、カスタム・フィルタリング条件を満たすすべてのエンティティを検索する。

フィルタリング方法

主キーによる

フィルタリング式による

フィルタリング式。

必須パラメータ

  • コレクション名

  • 主キー

  • コレクション名

  • フィルタリング式

  • コレクション名

  • フィルタリング式

  • クエリごとに返すエンティティの数

オプションのパラメータ

  • パーティション名

  • 出力フィールド

  • パーティション名

  • 返すエンティティの数

  • 出力フィールド

  • パーティション名

  • 合計で返すエンティティの数

  • 出力フィールド

返り値

指定されたコレクションまたはパーティション内の指定された主キーを保持するエンティティを返します。

指定されたコレクションまたはパーティションでカスタム・フィルタリング条件を満たすエンティティのすべてまたは指定された数を返します。

ページ分割クエリによって、指定されたコレクションまたはパーティションでカスタム・フィルタリング条件を満たすすべてのエンティティを返します。

メタデータ・フィルタリングの詳細は、"メタデータ・フィルタリング" を参照してください。

Get の使用法

主キーによってエンティティを検索する必要がある場合は、Getメソッドを使用できます。以下のコード例では、コレクションにidvectorcolor という 3 つのフィールドがあると仮定し、主キー123 を持つエンティティを返します。

[
        {"id": 0, "vector": [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592], "color": "pink_8682"},
        {"id": 1, "vector": [0.19886812562848388, 0.06023560599112088, 0.6976963061752597, 0.2614474506242501, 0.838729485096104], "color": "red_7025"},
        {"id": 2, "vector": [0.43742130801983836, -0.5597502546264526, 0.6457887650909682, 0.7894058910881185, 0.20785793220625592], "color": "orange_6781"},
        {"id": 3, "vector": [0.3172005263489739, 0.9719044792798428, -0.36981146090600725, -0.4860894583077995, 0.95791889146345], "color": "pink_9298"},
        {"id": 4, "vector": [0.4452349528804562, -0.8757026943054742, 0.8220779437047674, 0.46406290649483184, 0.30337481143159106], "color": "red_4794"},
        {"id": 5, "vector": [0.985825131989184, -0.8144651566660419, 0.6299267002202009, 0.1206906911183383, -0.1446277761879955], "color": "yellow_4222"},
        {"id": 6, "vector": [0.8371977790571115, -0.015764369584852833, -0.31062937026679327, -0.562666951622192, -0.8984947637863987], "color": "red_9392"},
        {"id": 7, "vector": [-0.33445148015177995, -0.2567135004164067, 0.8987539745369246, 0.9402995886420709, 0.5378064918413052], "color": "grey_8510"},
        {"id": 8, "vector": [0.39524717779832685, 0.4000257286739164, -0.5890507376891594, -0.8650502298996872, -0.6140360785406336], "color": "white_9381"},
        {"id": 9, "vector": [0.5718280481994695, 0.24070317428066512, -0.3737913482606834, -0.06726932177492717, -0.6980531615588608], "color": "purple_4976"},
]

from pymilvus import MilvusClient

client = MilvusClient(
    uri="http://localhost:19530",
    token="root:Milvus"
)

res = client.get(
    collection_name="query_collection",
    ids=[0, 1, 2],
    output_fields=["vector", "color"]
)

print(res)

import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.vector.request.GetReq
import io.milvus.v2.service.vector.request.GetResp
import java.util.*;

MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
        .uri("http://localhost:19530")
        .token("root:Milvus")
        .build());
        
GetReq getReq = GetReq.builder()
        .collectionName("query_collection")
        .ids(Arrays.asList(0, 1, 2))
        .outputFields(Arrays.asList("vector", "color"))
        .build();

GetResp getResp = client.get(getReq);

List<QueryResp.QueryResult> results = getResp.getGetResults();
for (QueryResp.QueryResult result : results) {
    System.out.println(result.getEntity());
}

// Output
// {color=pink_8682, vector=[0.35803765, -0.6023496, 0.18414013, -0.26286206, 0.90294385], id=0}
// {color=red_7025, vector=[0.19886813, 0.060235605, 0.6976963, 0.26144746, 0.8387295], id=1}
// {color=orange_6781, vector=[0.43742132, -0.55975026, 0.6457888, 0.7894059, 0.20785794], id=2}

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});

const res = client.get({
    collection_name="query_collection",
    ids=[0,1,2],
    output_fields=["vector", "color"]
})

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/get" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "quick_setup",
    "id": [0, 1, 2],
    "outputFields": ["vector", "color"]
}'

# {"code":0,"cost":0,"data":[{"color":"pink_8682","id":0,"vector":[0.35803765,-0.6023496,0.18414013,-0.26286206,0.90294385]},{"color":"red_7025","id":1,"vector":[0.19886813,0.060235605,0.6976963,0.26144746,0.8387295]},{"color":"orange_6781","id":2,"vector":[0.43742132,-0.55975026,0.6457888,0.7894059,0.20785794]}]}

クエリーの使用

独自のフィルタリング条件でエンティティを検索する必要がある場合は、Queryメソッドを使用します。以下のコード例では、idvectorcolor という 3 つのフィールドがあると仮定し、red で始まるcolor 値を保持するエンティティの指定された数を返します。

from pymilvus import MilvusClient

client = MilvusClient(
    uri="http://localhost:19530",
    token="root:Milvus"
)

res = client.query(
    collection_name="query_collection",
    filter="color like \"red%\"",
    output_fields=["vector", "color"],
    limit=3
)


import io.milvus.v2.service.vector.request.QueryReq
import io.milvus.v2.service.vector.request.QueryResp


QueryReq queryReq = QueryReq.builder()
        .collectionName("query_collection")
        .filter("color like \"red%\"")
        .outputFields(Arrays.asList("vector", "color"))
        .limit(3)
        .build();

QueryResp getResp = client.query(queryReq);

List<QueryResp.QueryResult> results = getResp.getQueryResults();
for (QueryResp.QueryResult result : results) {
    System.out.println(result.getEntity());
}

// Output
// {color=red_7025, vector=[0.19886813, 0.060235605, 0.6976963, 0.26144746, 0.8387295], id=1}
// {color=red_4794, vector=[0.44523495, -0.8757027, 0.82207793, 0.4640629, 0.3033748], id=4}
// {color=red_9392, vector=[0.8371978, -0.015764369, -0.31062937, -0.56266695, -0.8984948], id=6}

import (
    "context"
    "fmt"
    "log"

    "github.com/milvus-io/milvus/client/v2"
)

func ExampleClient_Query_basic() {
    ctx, cancel := context.WithCancel(context.Background())
    defer cancel()

    milvusAddr := "127.0.0.1:19530"
    token := "root:Milvus"

    cli, err := client.New(ctx, &client.ClientConfig{
        Address: milvusAddr,
        APIKey:  token,
    })
    if err != nil {
        log.Fatal("failed to connect to milvus server: ", err.Error())
    }

    defer cli.Close(ctx)

    resultSet, err := cli.Query(ctx, client.NewQueryOption("query_collection").
        WithFilter(`color like "red%"`).
        WithOutputFields("vector", "color").
        WithLimit(3))

    fmt.Println(resultSet.GetColumn("color"))
}


import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});

const res = client.query({
    collection_name="quick_setup",
    filter='color like "red%"',
    output_fields=["vector", "color"],
    limit(3)
})

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "quick_setup",
    "filter": "color like \"red%\"",
    "limit": 3,
    "outputFields": ["vector", "color"]
}'
#{"code":0,"cost":0,"data":[{"color":"red_7025","id":1,"vector":[0.19886813,0.060235605,0.6976963,0.26144746,0.8387295]},{"color":"red_4794","id":4,"vector":[0.44523495,-0.8757027,0.82207793,0.4640629,0.3033748]},{"color":"red_9392","id":6,"vector":[0.8371978,-0.015764369,-0.31062937,-0.56266695,-0.8984948]}]}

QueryIteratorの使用

ページ分割されたクエリを使用して、カスタム・フィルタリング条件でエンティティを検索する必要がある場合は、QueryIteratorを作成し、そのnext()メソッドを使用して、すべてのエンティティを繰り返し処理し、フィルタリング条件に一致するエンティティを検索します。以下のコード例では、idvectorcolor という 3 つのフィールドがあると仮定し、red から始まるcolor 値を保持するすべてのエンティティを返します。

from pymilvus import connections, Collection

connections.connect(
    uri="http://localhost:19530",
    token="root:Milvus"
)

collection = Collection("query_collection")

iterator = collection.query_iterator(
    batch_size=10,
    expr="color like \"red%\"",
    output_fields=["color"]
)

results = []

while True:
    result = iterator.next()
    if not result:
        iterator.close()
        break

    print(result)
    results += result

import io.milvus.orm.iterator.QueryIterator;
import io.milvus.response.QueryResultsWrapper;
import io.milvus.v2.common.ConsistencyLevel;
import io.milvus.v2.service.vector.request.QueryIteratorReq;


QueryIteratorReq req = QueryIteratorReq.builder()
        .collectionName("query_collection")
        .expr("color like \"red%\"")
        .batchSize(50L)
        .outputFields(Collections.singletonList("color"))
        .consistencyLevel(ConsistencyLevel.BOUNDED)
        .build();
QueryIterator queryIterator = client.queryIterator(req);

while (true) {
    List<QueryResultsWrapper.RowRecord> res = queryIterator.next();
    if (res.isEmpty()) {
        queryIterator.close();
        break;
    }

    for (QueryResultsWrapper.RowRecord record : res) {
        System.out.println(record);
    }
}

// Output
// [color:red_7025, id:1]
// [color:red_4794, id:4]
// [color:red_9392, id:6]

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const iterator = await milvusClient.queryIterator({
  collection_name: 'query_collection',
  batchSize: 10,
  expr: 'color like "red%"',
  output_fields: ['color'],
});

const results = [];
for await (const value of iterator) {
  results.push(...value);
  page += 1;
}

# Currently not available

パーティション内のクエリ

Get、Query、QueryIteratorリクエストにパーティション名を含めることで、1つまたは複数のパーティション内でクエリーを実行することもできます。以下のコード例では、コレクション内にPartitionAというパーティションがあると仮定しています。

from pymilvus import MilvusClient
client = MilvusClient(
    uri="http://localhost:19530",
    token="root:Milvus"
)

res = client.get(
    collection_name="query_collection",
    # highlight-next-line
    partitionNames=["partitionA"],
    ids=[0, 1, 2],
    output_fields=["vector", "color"]
)

from pymilvus import MilvusClient

client = MilvusClient(
    uri="http://localhost:19530",
    token="root:Milvus"
)

res = client.query(
    collection_name="query_collection",
    # highlight-next-line
    partitionNames=["partitionA"],
    filter="color like \"red%\"",
    output_fields=["vector", "color"],
    limit=3
)

# 使用 QueryIterator
from pymilvus import connections, Collection

connections.connect(
    uri="http://localhost:19530",
    token="root:Milvus"
)

collection = Collection("query_collection")

iterator = collection.query_iterator(
    # highlight-next-line
    partition_names=["partitionA"],
    batch_size=10,
    expr="color like \"red%\"",
    output_fields=["color"]
)

results = []

while True:
    result = iterator.next()
    if not result:
        iterator.close()
        break

    print(result)
    results += result

GetReq getReq = GetReq.builder()
        .collectionName("query_collection")
        .partitionName("partitionA")
        .ids(Arrays.asList(10, 11, 12))
        .outputFields(Collections.singletonList("color"))
        .build();

GetResp getResp = client.get(getReq);


QueryReq queryReq = QueryReq.builder()
        .collectionName("query_collection")
        .partitionNames(Collections.singletonList("partitionA"))
        .filter("color like \"red%\"")
        .outputFields(Collections.singletonList("color"))
        .limit(3)
        .build();

QueryResp getResp = client.query(queryReq);


QueryIteratorReq req = QueryIteratorReq.builder()
        .collectionName("query_collection")
        .partitionNames(Collections.singletonList("partitionA"))
        .expr("color like \"red%\"")
        .batchSize(50L)
        .outputFields(Collections.singletonList("color"))
        .consistencyLevel(ConsistencyLevel.BOUNDED)
        .build();
QueryIterator queryIterator = client.queryIterator(req);

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});

// 使用 Get 方法
var res = client.query({
    collection_name="query_collection",
    // highlight-next-line
    partition_names=["partitionA"],
    filter='color like "red%"',
    output_fields=["vector", "color"],
    limit(3)
})

// 使用 Query 方法
res = client.query({
    collection_name="query_collection",
    // highlight-next-line
    partition_names=["partitionA"],
    filter="color like \"red%\"",
    output_fields=["vector", "color"],
    limit(3)
})

// 暂不支持使用 QueryIterator
const iterator = await milvusClient.queryIterator({
  collection_name: 'query_collection',
  partition_names: ['partitionA'],
  batchSize: 10,
  expr: 'color like "red%"',
  output_fields: ['vector', 'color'],
});

const results = [];
for await (const value of iterator) {
  results.push(...value);
  page += 1;
}

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

# 使用 Get 方法
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/get" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "query_collection",
    "partitionNames": ["partitionA"],
    "id": [0, 1, 2],
    "outputFields": ["vector", "color"]
}'

# 使用 Query 方法
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/get" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "query_collection",
    "partitionNames": ["partitionA"],
    "filter": "color like \"red%\"",
    "limit": 3,
    "outputFields": ["vector", "color"],
    "id": [0, 1, 2]
}'

翻訳DeepL

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
フィードバック

このページは役に立ちましたか ?