milvus-logo
LFAI
Casa
  • Guida per l'utente

Interrogazione

Oltre alle ricerche in RNA, Milvus supporta anche il filtraggio dei metadati attraverso le query. Questa pagina illustra come utilizzare Query, Get e QueryIterators per eseguire il filtraggio dei metadati.

Panoramica

Una Collezione può memorizzare vari tipi di campi scalari. Milvus può filtrare le entità in base a uno o più campi scalari. Milvus offre tre tipi di query: Query, Get e QueryIterator. La tabella seguente mette a confronto questi tre tipi di query.

Ottieni

Query

QueryIterator

Scenari applicabili

Per trovare le entità che possiedono le chiavi primarie specificate.

Per trovare tutte o un numero specifico di entità che soddisfano le condizioni di filtraggio personalizzate.

Per trovare tutte le entità che soddisfano le condizioni di filtraggio personalizzate nelle query paginate.

Metodo di filtraggio

Per chiavi primarie

Tramite espressioni di filtraggio.

Per espressioni di filtraggio.

Parametri obbligatori

  • Nome della raccolta

  • Chiavi primarie

  • Nome della raccolta

  • Espressioni di filtraggio

  • Nome della raccolta

  • Espressioni di filtraggio

  • Numero di entità da restituire per ogni query

Parametri opzionali

  • Nome della partizione

  • Campi di output

  • Nome della partizione

  • Numero di entità da restituire

  • Campi di uscita

  • Nome della partizione

  • Numero di entità da restituire in totale

  • Campi di output

Restituisce

Restituisce le entità che contengono le chiavi primarie specificate nella raccolta o partizione specificata.

Restituisce tutte o un numero specificato di entità che soddisfano le condizioni di filtraggio personalizzate nella raccolta o partizione specificata.

Restituisce tutte le entità che soddisfano le condizioni di filtraggio personalizzate nella raccolta o partizione specificata attraverso query paginate.

Per ulteriori informazioni sul filtraggio dei metadati, consultare Filtraggio dei metadati.

Uso di Ottieni

Quando è necessario trovare le entità in base alle loro chiavi primarie, si può usare il metodo Get. I seguenti esempi di codice ipotizzano la presenza di tre campi denominati id, vector e color nella collezione e restituiscono le entità con le chiavi primarie 1, 2 e 3.

[
        {"id": 0, "vector": [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592], "color": "pink_8682"},
        {"id": 1, "vector": [0.19886812562848388, 0.06023560599112088, 0.6976963061752597, 0.2614474506242501, 0.838729485096104], "color": "red_7025"},
        {"id": 2, "vector": [0.43742130801983836, -0.5597502546264526, 0.6457887650909682, 0.7894058910881185, 0.20785793220625592], "color": "orange_6781"},
        {"id": 3, "vector": [0.3172005263489739, 0.9719044792798428, -0.36981146090600725, -0.4860894583077995, 0.95791889146345], "color": "pink_9298"},
        {"id": 4, "vector": [0.4452349528804562, -0.8757026943054742, 0.8220779437047674, 0.46406290649483184, 0.30337481143159106], "color": "red_4794"},
        {"id": 5, "vector": [0.985825131989184, -0.8144651566660419, 0.6299267002202009, 0.1206906911183383, -0.1446277761879955], "color": "yellow_4222"},
        {"id": 6, "vector": [0.8371977790571115, -0.015764369584852833, -0.31062937026679327, -0.562666951622192, -0.8984947637863987], "color": "red_9392"},
        {"id": 7, "vector": [-0.33445148015177995, -0.2567135004164067, 0.8987539745369246, 0.9402995886420709, 0.5378064918413052], "color": "grey_8510"},
        {"id": 8, "vector": [0.39524717779832685, 0.4000257286739164, -0.5890507376891594, -0.8650502298996872, -0.6140360785406336], "color": "white_9381"},
        {"id": 9, "vector": [0.5718280481994695, 0.24070317428066512, -0.3737913482606834, -0.06726932177492717, -0.6980531615588608], "color": "purple_4976"},
]

from pymilvus import MilvusClient

client = MilvusClient(
    uri="http://localhost:19530",
    token="root:Milvus"
)

res = client.get(
    collection_name="query_collection",
    ids=[0, 1, 2],
    output_fields=["vector", "color"]
)

print(res)

import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.vector.request.GetReq
import io.milvus.v2.service.vector.request.GetResp
import java.util.*;

MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
        .uri("http://localhost:19530")
        .token("root:Milvus")
        .build());
        
GetReq getReq = GetReq.builder()
        .collectionName("query_collection")
        .ids(Arrays.asList(0, 1, 2))
        .outputFields(Arrays.asList("vector", "color"))
        .build();

GetResp getResp = client.get(getReq);

List<QueryResp.QueryResult> results = getResp.getGetResults();
for (QueryResp.QueryResult result : results) {
    System.out.println(result.getEntity());
}

// Output
// {color=pink_8682, vector=[0.35803765, -0.6023496, 0.18414013, -0.26286206, 0.90294385], id=0}
// {color=red_7025, vector=[0.19886813, 0.060235605, 0.6976963, 0.26144746, 0.8387295], id=1}
// {color=orange_6781, vector=[0.43742132, -0.55975026, 0.6457888, 0.7894059, 0.20785794], id=2}

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});

const res = client.get({
    collection_name="query_collection",
    ids=[0,1,2],
    output_fields=["vector", "color"]
})

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/get" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "quick_setup",
    "id": [0, 1, 2],
    "outputFields": ["vector", "color"]
}'

# {"code":0,"cost":0,"data":[{"color":"pink_8682","id":0,"vector":[0.35803765,-0.6023496,0.18414013,-0.26286206,0.90294385]},{"color":"red_7025","id":1,"vector":[0.19886813,0.060235605,0.6976963,0.26144746,0.8387295]},{"color":"orange_6781","id":2,"vector":[0.43742132,-0.55975026,0.6457888,0.7894059,0.20785794]}]}

Utilizzare la query

Per trovare le entità in base a condizioni di filtraggio personalizzate, utilizzare il metodo Query. I seguenti esempi di codice ipotizzano la presenza di tre campi denominati id, vector, e color e restituiscono il numero specificato di entità che possiedono un valore color a partire da red.

from pymilvus import MilvusClient

client = MilvusClient(
    uri="http://localhost:19530",
    token="root:Milvus"
)

res = client.query(
    collection_name="query_collection",
    filter="color like \"red%\"",
    output_fields=["vector", "color"],
    limit=3
)


import io.milvus.v2.service.vector.request.QueryReq
import io.milvus.v2.service.vector.request.QueryResp


QueryReq queryReq = QueryReq.builder()
        .collectionName("query_collection")
        .filter("color like \"red%\"")
        .outputFields(Arrays.asList("vector", "color"))
        .limit(3)
        .build();

QueryResp getResp = client.query(queryReq);

List<QueryResp.QueryResult> results = getResp.getQueryResults();
for (QueryResp.QueryResult result : results) {
    System.out.println(result.getEntity());
}

// Output
// {color=red_7025, vector=[0.19886813, 0.060235605, 0.6976963, 0.26144746, 0.8387295], id=1}
// {color=red_4794, vector=[0.44523495, -0.8757027, 0.82207793, 0.4640629, 0.3033748], id=4}
// {color=red_9392, vector=[0.8371978, -0.015764369, -0.31062937, -0.56266695, -0.8984948], id=6}

import (
    "context"
    "fmt"
    "log"

    "github.com/milvus-io/milvus/client/v2"
)

func ExampleClient_Query_basic() {
    ctx, cancel := context.WithCancel(context.Background())
    defer cancel()

    milvusAddr := "127.0.0.1:19530"
    token := "root:Milvus"

    cli, err := client.New(ctx, &client.ClientConfig{
        Address: milvusAddr,
        APIKey:  token,
    })
    if err != nil {
        log.Fatal("failed to connect to milvus server: ", err.Error())
    }

    defer cli.Close(ctx)

    resultSet, err := cli.Query(ctx, client.NewQueryOption("query_collection").
        WithFilter(`color like "red%"`).
        WithOutputFields("vector", "color").
        WithLimit(3))

    fmt.Println(resultSet.GetColumn("color"))
}


import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});

const res = client.query({
    collection_name="quick_setup",
    filter='color like "red%"',
    output_fields=["vector", "color"],
    limit(3)
})

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "quick_setup",
    "filter": "color like \"red%\"",
    "limit": 3,
    "outputFields": ["vector", "color"]
}'
#{"code":0,"cost":0,"data":[{"color":"red_7025","id":1,"vector":[0.19886813,0.060235605,0.6976963,0.26144746,0.8387295]},{"color":"red_4794","id":4,"vector":[0.44523495,-0.8757027,0.82207793,0.4640629,0.3033748]},{"color":"red_9392","id":6,"vector":[0.8371978,-0.015764369,-0.31062937,-0.56266695,-0.8984948]}]}

Utilizzare QueryIterator

Quando è necessario trovare entità in base a condizioni di filtraggio personalizzate attraverso query paginate, creare un QueryIterator e usare il suo metodo next() per iterare su tutte le entità e trovare quelle che soddisfano le condizioni di filtraggio. I seguenti esempi di codice assumono che ci siano tre campi denominati id, vector e color e restituiscono tutte le entità che possiedono un valore color a partire da red.

from pymilvus import connections, Collection

connections.connect(
    uri="http://localhost:19530",
    token="root:Milvus"
)

collection = Collection("query_collection")

iterator = collection.query_iterator(
    batch_size=10,
    expr="color like \"red%\"",
    output_fields=["color"]
)

results = []

while True:
    result = iterator.next()
    if not result:
        iterator.close()
        break

    print(result)
    results += result

import io.milvus.orm.iterator.QueryIterator;
import io.milvus.response.QueryResultsWrapper;
import io.milvus.v2.common.ConsistencyLevel;
import io.milvus.v2.service.vector.request.QueryIteratorReq;


QueryIteratorReq req = QueryIteratorReq.builder()
        .collectionName("query_collection")
        .expr("color like \"red%\"")
        .batchSize(50L)
        .outputFields(Collections.singletonList("color"))
        .consistencyLevel(ConsistencyLevel.BOUNDED)
        .build();
QueryIterator queryIterator = client.queryIterator(req);

while (true) {
    List<QueryResultsWrapper.RowRecord> res = queryIterator.next();
    if (res.isEmpty()) {
        queryIterator.close();
        break;
    }

    for (QueryResultsWrapper.RowRecord record : res) {
        System.out.println(record);
    }
}

// Output
// [color:red_7025, id:1]
// [color:red_4794, id:4]
// [color:red_9392, id:6]

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const iterator = await milvusClient.queryIterator({
  collection_name: 'query_collection',
  batchSize: 10,
  expr: 'color like "red%"',
  output_fields: ['color'],
});

const results = [];
for await (const value of iterator) {
  results.push(...value);
  page += 1;
}

# Currently not available

Query in partizioni

È anche possibile eseguire query all'interno di una o più partizioni, includendo i nomi delle partizioni nella richiesta Get, Query o QueryIterator. I seguenti esempi di codice presuppongono che nell'insieme sia presente una partizione denominata PartitionA.

from pymilvus import MilvusClient
client = MilvusClient(
    uri="http://localhost:19530",
    token="root:Milvus"
)

res = client.get(
    collection_name="query_collection",
    # highlight-next-line
    partitionNames=["partitionA"],
    ids=[0, 1, 2],
    output_fields=["vector", "color"]
)

from pymilvus import MilvusClient

client = MilvusClient(
    uri="http://localhost:19530",
    token="root:Milvus"
)

res = client.query(
    collection_name="query_collection",
    # highlight-next-line
    partitionNames=["partitionA"],
    filter="color like \"red%\"",
    output_fields=["vector", "color"],
    limit=3
)

# 使用 QueryIterator
from pymilvus import connections, Collection

connections.connect(
    uri="http://localhost:19530",
    token="root:Milvus"
)

collection = Collection("query_collection")

iterator = collection.query_iterator(
    # highlight-next-line
    partition_names=["partitionA"],
    batch_size=10,
    expr="color like \"red%\"",
    output_fields=["color"]
)

results = []

while True:
    result = iterator.next()
    if not result:
        iterator.close()
        break

    print(result)
    results += result

GetReq getReq = GetReq.builder()
        .collectionName("query_collection")
        .partitionName("partitionA")
        .ids(Arrays.asList(10, 11, 12))
        .outputFields(Collections.singletonList("color"))
        .build();

GetResp getResp = client.get(getReq);


QueryReq queryReq = QueryReq.builder()
        .collectionName("query_collection")
        .partitionNames(Collections.singletonList("partitionA"))
        .filter("color like \"red%\"")
        .outputFields(Collections.singletonList("color"))
        .limit(3)
        .build();

QueryResp getResp = client.query(queryReq);


QueryIteratorReq req = QueryIteratorReq.builder()
        .collectionName("query_collection")
        .partitionNames(Collections.singletonList("partitionA"))
        .expr("color like \"red%\"")
        .batchSize(50L)
        .outputFields(Collections.singletonList("color"))
        .consistencyLevel(ConsistencyLevel.BOUNDED)
        .build();
QueryIterator queryIterator = client.queryIterator(req);

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});

// 使用 Get 方法
var res = client.query({
    collection_name="query_collection",
    // highlight-next-line
    partition_names=["partitionA"],
    filter='color like "red%"',
    output_fields=["vector", "color"],
    limit(3)
})

// 使用 Query 方法
res = client.query({
    collection_name="query_collection",
    // highlight-next-line
    partition_names=["partitionA"],
    filter="color like \"red%\"",
    output_fields=["vector", "color"],
    limit(3)
})

// 暂不支持使用 QueryIterator
const iterator = await milvusClient.queryIterator({
  collection_name: 'query_collection',
  partition_names: ['partitionA'],
  batchSize: 10,
  expr: 'color like "red%"',
  output_fields: ['vector', 'color'],
});

const results = [];
for await (const value of iterator) {
  results.push(...value);
  page += 1;
}

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

# 使用 Get 方法
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/get" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "query_collection",
    "partitionNames": ["partitionA"],
    "id": [0, 1, 2],
    "outputFields": ["vector", "color"]
}'

# 使用 Query 方法
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/get" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "query_collection",
    "partitionNames": ["partitionA"],
    "filter": "color like \"red%\"",
    "limit": 3,
    "outputFields": ["vector", "color"],
    "id": [0, 1, 2]
}'

Tradotto daDeepL

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

Questa pagina è stata utile?