Consulta
Además de las búsquedas RNA, Milvus también soporta el filtrado de metadatos a través de consultas. Esta página presenta cómo utilizar Query, Get y QueryIterators para realizar el filtrado de metadatos.
Visión general
Una Colección puede almacenar varios tipos de campos escalares. Puede hacer que Milvus filtre Entidades basándose en uno o más campos escalares. Milvus ofrece tres tipos de consultas: Query, Get y QueryIterator. La siguiente tabla compara estos tres tipos de consulta.
Obtener | Consulta | QueryIterator | |
---|---|---|---|
Escenarios aplicables | Para encontrar entidades que contengan las claves primarias especificadas. | Para encontrar todas o un número determinado de entidades que cumplan las condiciones de filtrado personalizadas. | Para encontrar todas las entidades que cumplen las condiciones de filtrado personalizadas en consultas paginadas. |
Método de filtrado | Por claves primarias | Por expresiones de filtrado. | Por expresiones de filtrado. |
Parámetros obligatorios |
|
|
|
Parámetros opcionales |
|
|
|
Devuelve | Devuelve las entidades que tienen las claves primarias especificadas en la colección o partición especificada. | Devuelve todas o un número especificado de entidades que cumplen las condiciones de filtrado personalizadas en la colección o partición especificada. | Devuelve todas las entidades que cumplen las condiciones de filtrado personalizadas en la colección o partición especificada mediante consultas paginadas. |
Para obtener más información sobre el filtrado de metadatos, consulte Filtrado de metadatos.
Uso de Get
Cuando necesite encontrar entidades por sus claves primarias, puede utilizar el método Get. Los siguientes ejemplos de código asumen que hay tres campos llamados id
, vector
, y color
en su colección y devuelven las entidades con claves primarias 1
, 2
, y 3
.
[
{"id": 0, "vector": [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592], "color": "pink_8682"},
{"id": 1, "vector": [0.19886812562848388, 0.06023560599112088, 0.6976963061752597, 0.2614474506242501, 0.838729485096104], "color": "red_7025"},
{"id": 2, "vector": [0.43742130801983836, -0.5597502546264526, 0.6457887650909682, 0.7894058910881185, 0.20785793220625592], "color": "orange_6781"},
{"id": 3, "vector": [0.3172005263489739, 0.9719044792798428, -0.36981146090600725, -0.4860894583077995, 0.95791889146345], "color": "pink_9298"},
{"id": 4, "vector": [0.4452349528804562, -0.8757026943054742, 0.8220779437047674, 0.46406290649483184, 0.30337481143159106], "color": "red_4794"},
{"id": 5, "vector": [0.985825131989184, -0.8144651566660419, 0.6299267002202009, 0.1206906911183383, -0.1446277761879955], "color": "yellow_4222"},
{"id": 6, "vector": [0.8371977790571115, -0.015764369584852833, -0.31062937026679327, -0.562666951622192, -0.8984947637863987], "color": "red_9392"},
{"id": 7, "vector": [-0.33445148015177995, -0.2567135004164067, 0.8987539745369246, 0.9402995886420709, 0.5378064918413052], "color": "grey_8510"},
{"id": 8, "vector": [0.39524717779832685, 0.4000257286739164, -0.5890507376891594, -0.8650502298996872, -0.6140360785406336], "color": "white_9381"},
{"id": 9, "vector": [0.5718280481994695, 0.24070317428066512, -0.3737913482606834, -0.06726932177492717, -0.6980531615588608], "color": "purple_4976"},
]
from pymilvus import MilvusClient
client = MilvusClient(
uri="http://localhost:19530",
token="root:Milvus"
)
res = client.get(
collection_name="query_collection",
ids=[0, 1, 2],
output_fields=["vector", "color"]
)
print(res)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.vector.request.GetReq
import io.milvus.v2.service.vector.request.GetResp
import java.util.*;
MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
.uri("http://localhost:19530")
.token("root:Milvus")
.build());
GetReq getReq = GetReq.builder()
.collectionName("query_collection")
.ids(Arrays.asList(0, 1, 2))
.outputFields(Arrays.asList("vector", "color"))
.build();
GetResp getResp = client.get(getReq);
List<QueryResp.QueryResult> results = getResp.getGetResults();
for (QueryResp.QueryResult result : results) {
System.out.println(result.getEntity());
}
// Output
// {color=pink_8682, vector=[0.35803765, -0.6023496, 0.18414013, -0.26286206, 0.90294385], id=0}
// {color=red_7025, vector=[0.19886813, 0.060235605, 0.6976963, 0.26144746, 0.8387295], id=1}
// {color=orange_6781, vector=[0.43742132, -0.55975026, 0.6457888, 0.7894059, 0.20785794], id=2}
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});
const res = client.get({
collection_name="query_collection",
ids=[0,1,2],
output_fields=["vector", "color"]
})
export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/get" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "quick_setup",
"id": [0, 1, 2],
"outputFields": ["vector", "color"]
}'
# {"code":0,"cost":0,"data":[{"color":"pink_8682","id":0,"vector":[0.35803765,-0.6023496,0.18414013,-0.26286206,0.90294385]},{"color":"red_7025","id":1,"vector":[0.19886813,0.060235605,0.6976963,0.26144746,0.8387295]},{"color":"orange_6781","id":2,"vector":[0.43742132,-0.55975026,0.6457888,0.7894059,0.20785794]}]}
Utilizar la consulta
Cuando necesite encontrar entidades mediante condiciones de filtrado personalizadas, utilice el método Query. Los siguientes ejemplos de código asumen que hay tres campos llamados id
, vector
, y color
y devuelven el número especificado de entidades que tienen un valor color
empezando por red
.
from pymilvus import MilvusClient
client = MilvusClient(
uri="http://localhost:19530",
token="root:Milvus"
)
res = client.query(
collection_name="query_collection",
filter="color like \"red%\"",
output_fields=["vector", "color"],
limit=3
)
import io.milvus.v2.service.vector.request.QueryReq
import io.milvus.v2.service.vector.request.QueryResp
QueryReq queryReq = QueryReq.builder()
.collectionName("query_collection")
.filter("color like \"red%\"")
.outputFields(Arrays.asList("vector", "color"))
.limit(3)
.build();
QueryResp getResp = client.query(queryReq);
List<QueryResp.QueryResult> results = getResp.getQueryResults();
for (QueryResp.QueryResult result : results) {
System.out.println(result.getEntity());
}
// Output
// {color=red_7025, vector=[0.19886813, 0.060235605, 0.6976963, 0.26144746, 0.8387295], id=1}
// {color=red_4794, vector=[0.44523495, -0.8757027, 0.82207793, 0.4640629, 0.3033748], id=4}
// {color=red_9392, vector=[0.8371978, -0.015764369, -0.31062937, -0.56266695, -0.8984948], id=6}
import (
"context"
"fmt"
"log"
"github.com/milvus-io/milvus/client/v2"
)
func ExampleClient_Query_basic() {
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
milvusAddr := "127.0.0.1:19530"
token := "root:Milvus"
cli, err := client.New(ctx, &client.ClientConfig{
Address: milvusAddr,
APIKey: token,
})
if err != nil {
log.Fatal("failed to connect to milvus server: ", err.Error())
}
defer cli.Close(ctx)
resultSet, err := cli.Query(ctx, client.NewQueryOption("query_collection").
WithFilter(`color like "red%"`).
WithOutputFields("vector", "color").
WithLimit(3))
fmt.Println(resultSet.GetColumn("color"))
}
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});
const res = client.query({
collection_name="quick_setup",
filter='color like "red%"',
output_fields=["vector", "color"],
limit(3)
})
export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "quick_setup",
"filter": "color like \"red%\"",
"limit": 3,
"outputFields": ["vector", "color"]
}'
#{"code":0,"cost":0,"data":[{"color":"red_7025","id":1,"vector":[0.19886813,0.060235605,0.6976963,0.26144746,0.8387295]},{"color":"red_4794","id":4,"vector":[0.44523495,-0.8757027,0.82207793,0.4640629,0.3033748]},{"color":"red_9392","id":6,"vector":[0.8371978,-0.015764369,-0.31062937,-0.56266695,-0.8984948]}]}
Utilizar QueryIterator
Cuando necesites encontrar entidades por condiciones de filtrado personalizadas a través de consultas paginadas, crea un QueryIterator y utiliza su método next() para iterar sobre todas las entidades y encontrar aquellas que cumplan las condiciones de filtrado. Los siguientes ejemplos de código asumen que hay tres campos llamados id
, vector
, y color
y devuelven todas las entidades que tienen un valor color
empezando por red
.
from pymilvus import connections, Collection
connections.connect(
uri="http://localhost:19530",
token="root:Milvus"
)
collection = Collection("query_collection")
iterator = collection.query_iterator(
batch_size=10,
expr="color like \"red%\"",
output_fields=["color"]
)
results = []
while True:
result = iterator.next()
if not result:
iterator.close()
break
print(result)
results += result
import io.milvus.orm.iterator.QueryIterator;
import io.milvus.response.QueryResultsWrapper;
import io.milvus.v2.common.ConsistencyLevel;
import io.milvus.v2.service.vector.request.QueryIteratorReq;
QueryIteratorReq req = QueryIteratorReq.builder()
.collectionName("query_collection")
.expr("color like \"red%\"")
.batchSize(50L)
.outputFields(Collections.singletonList("color"))
.consistencyLevel(ConsistencyLevel.BOUNDED)
.build();
QueryIterator queryIterator = client.queryIterator(req);
while (true) {
List<QueryResultsWrapper.RowRecord> res = queryIterator.next();
if (res.isEmpty()) {
queryIterator.close();
break;
}
for (QueryResultsWrapper.RowRecord record : res) {
System.out.println(record);
}
}
// Output
// [color:red_7025, id:1]
// [color:red_4794, id:4]
// [color:red_9392, id:6]
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const iterator = await milvusClient.queryIterator({
collection_name: 'query_collection',
batchSize: 10,
expr: 'color like "red%"',
output_fields: ['color'],
});
const results = [];
for await (const value of iterator) {
results.push(...value);
page += 1;
}
# Currently not available
Consultas en particiones
También puedes realizar consultas dentro de una o varias particiones incluyendo los nombres de las particiones en la petición Get, Query o QueryIterator. Los siguientes ejemplos de código asumen que hay una partición llamada PartitionA en la colección.
from pymilvus import MilvusClient
client = MilvusClient(
uri="http://localhost:19530",
token="root:Milvus"
)
res = client.get(
collection_name="query_collection",
# highlight-next-line
partitionNames=["partitionA"],
ids=[0, 1, 2],
output_fields=["vector", "color"]
)
from pymilvus import MilvusClient
client = MilvusClient(
uri="http://localhost:19530",
token="root:Milvus"
)
res = client.query(
collection_name="query_collection",
# highlight-next-line
partitionNames=["partitionA"],
filter="color like \"red%\"",
output_fields=["vector", "color"],
limit=3
)
# 使用 QueryIterator
from pymilvus import connections, Collection
connections.connect(
uri="http://localhost:19530",
token="root:Milvus"
)
collection = Collection("query_collection")
iterator = collection.query_iterator(
# highlight-next-line
partition_names=["partitionA"],
batch_size=10,
expr="color like \"red%\"",
output_fields=["color"]
)
results = []
while True:
result = iterator.next()
if not result:
iterator.close()
break
print(result)
results += result
GetReq getReq = GetReq.builder()
.collectionName("query_collection")
.partitionName("partitionA")
.ids(Arrays.asList(10, 11, 12))
.outputFields(Collections.singletonList("color"))
.build();
GetResp getResp = client.get(getReq);
QueryReq queryReq = QueryReq.builder()
.collectionName("query_collection")
.partitionNames(Collections.singletonList("partitionA"))
.filter("color like \"red%\"")
.outputFields(Collections.singletonList("color"))
.limit(3)
.build();
QueryResp getResp = client.query(queryReq);
QueryIteratorReq req = QueryIteratorReq.builder()
.collectionName("query_collection")
.partitionNames(Collections.singletonList("partitionA"))
.expr("color like \"red%\"")
.batchSize(50L)
.outputFields(Collections.singletonList("color"))
.consistencyLevel(ConsistencyLevel.BOUNDED)
.build();
QueryIterator queryIterator = client.queryIterator(req);
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});
// 使用 Get 方法
var res = client.query({
collection_name="query_collection",
// highlight-next-line
partition_names=["partitionA"],
filter='color like "red%"',
output_fields=["vector", "color"],
limit(3)
})
// 使用 Query 方法
res = client.query({
collection_name="query_collection",
// highlight-next-line
partition_names=["partitionA"],
filter="color like \"red%\"",
output_fields=["vector", "color"],
limit(3)
})
// 暂不支持使用 QueryIterator
const iterator = await milvusClient.queryIterator({
collection_name: 'query_collection',
partition_names: ['partitionA'],
batchSize: 10,
expr: 'color like "red%"',
output_fields: ['vector', 'color'],
});
const results = [];
for await (const value of iterator) {
results.push(...value);
page += 1;
}
export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"
# 使用 Get 方法
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/get" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "query_collection",
"partitionNames": ["partitionA"],
"id": [0, 1, 2],
"outputFields": ["vector", "color"]
}'
# 使用 Query 方法
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/get" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "query_collection",
"partitionNames": ["partitionA"],
"filter": "color like \"red%\"",
"limit": 3,
"outputFields": ["vector", "color"],
"id": [0, 1, 2]
}'