milvus-logo
LFAI
Home
  • Benutzerhandbuch

Gefilterte Suche

Eine ANN-Suche findet Vektoreinbettungen, die den angegebenen Vektoreinbettungen am ähnlichsten sind. Die Suchergebnisse sind jedoch nicht immer korrekt. Sie können Filterbedingungen in eine Suchanfrage aufnehmen, so dass Milvus vor der ANN-Suche eine Metadatenfilterung durchführt und den Suchbereich von der gesamten Sammlung auf die Entitäten reduziert, die den angegebenen Filterbedingungen entsprechen.

Übersicht

Wenn eine Sammlung sowohl Vektoreinbettungen als auch deren Metadaten enthält, können Sie die Metadaten vor der ANN-Suche filtern, um die Relevanz des Suchergebnisses zu verbessern. Sobald Milvus eine Suchanfrage mit einer Filterbedingung erhält, schränkt es den Suchbereich auf die Entitäten ein, die der angegebenen Filterbedingung entsprechen.

Filtered search Gefilterte Suche

Wie im obigen Diagramm dargestellt, enthält die Suchanfrage chunk like % red % als Filterbedingung, was bedeutet, dass Milvus die ANN-Suche in allen Entitäten durchführen soll, die das Wort red im Feld chunk enthalten. Konkret geht Milvus wie folgt vor.

  • Filterung der Entitäten, die mit den Filterbedingungen in der Suchanfrage übereinstimmen.

  • Führt die ANN-Suche innerhalb der gefilterten Entitäten durch.

  • Gibt die Top-K Entitäten zurück.

Beispiele

Dieser Abschnitt demonstriert, wie man eine gefilterte Suche durchführt. Die Codeschnipsel in diesem Abschnitt gehen davon aus, dass Sie bereits die folgenden Entitäten in Ihrer Sammlung haben. Jede Entität hat vier Felder, nämlich id, vector, color und likes.

[
    {"id": 0, "vector": [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592], "color": "pink_8682", "likes": 165},
    {"id": 1, "vector": [0.19886812562848388, 0.06023560599112088, 0.6976963061752597, 0.2614474506242501, 0.838729485096104], "color": "red_7025", "likes": 25},
    {"id": 2, "vector": [0.43742130801983836, -0.5597502546264526, 0.6457887650909682, 0.7894058910881185, 0.20785793220625592], "color": "orange_6781", "likes": 764},
    {"id": 3, "vector": [0.3172005263489739, 0.9719044792798428, -0.36981146090600725, -0.4860894583077995, 0.95791889146345], "color": "pink_9298", "likes": 234},
    {"id": 4, "vector": [0.4452349528804562, -0.8757026943054742, 0.8220779437047674, 0.46406290649483184, 0.30337481143159106], "color": "red_4794", "likes": 122},
    {"id": 5, "vector": [0.985825131989184, -0.8144651566660419, 0.6299267002202009, 0.1206906911183383, -0.1446277761879955], "color": "yellow_4222", "likes": 12},
    {"id": 6, "vector": [0.8371977790571115, -0.015764369584852833, -0.31062937026679327, -0.562666951622192, -0.8984947637863987], "color": "red_9392", "likes": 58},
    {"id": 7, "vector": [-0.33445148015177995, -0.2567135004164067, 0.8987539745369246, 0.9402995886420709, 0.5378064918413052], "color": "grey_8510", "likes": 775},
    {"id": 8, "vector": [0.39524717779832685, 0.4000257286739164, -0.5890507376891594, -0.8650502298996872, -0.6140360785406336], "color": "white_9381", "likes": 876},
    {"id": 9, "vector": [0.5718280481994695, 0.24070317428066512, -0.3737913482606834, -0.06726932177492717, -0.6980531615588608], "color": "purple_4976", "likes": 765}
]

Die Suchanfrage im folgenden Codeschnipsel enthält eine Filterungsbedingung und mehrere Ausgabefelder.

from pymilvus import MilvusClient

client = MilvusClient(
    uri="http://localhost:19530",
    token="root:Milvus"
)

query_vector = [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592]

res = client.search(
    collection_name="my_collection",
    data=[query_vector],
    limit=5,
    # highlight-start
    filter='color like "red%" and likes > 50',
    output_fields=["color", "likes"]
    # highlight-end
)

for hits in res:
    print("TopK results:")
    for hit in hits:
        print(hit)

import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.vector.request.SearchReq
import io.milvus.v2.service.vector.request.data.FloatVec;
import io.milvus.v2.service.vector.response.SearchResp

MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
        .uri("http://localhost:19530")
        .token("root:Milvus")
        .build());

FloatVec queryVector = new FloatVec(new float[]{0.3580376395471989f, -0.6023495712049978f, 0.18414012509913835f, -0.26286205330961354f, 0.9029438446296592f});
SearchReq searchReq = SearchReq.builder()
        .collectionName("filtered_search_collection")
        .data(Collections.singletonList(queryVector))
        .topK(5)
        .filter("color like \"red%\" and likes > 50")
        .outputFields(Arrays.asList("color", "likes"))
        .build();

SearchResp searchResp = client.search(searchReq);

List<List<SearchResp.SearchResult>> searchResults = searchResp.getSearchResults();
for (List<SearchResp.SearchResult> results : searchResults) {
    System.out.println("TopK results:");
    for (SearchResp.SearchResult result : results) {
        System.out.println(result);
    }
}

// Output
// TopK results:
// SearchResp.SearchResult(entity={color=red_4794, likes=122}, score=0.5975797, id=4)
// SearchResp.SearchResult(entity={color=red_9392, likes=58}, score=-0.24996188, id=6)

import (
    "context"
    "log"

    "github.com/milvus-io/milvus/client/v2"
    "github.com/milvus-io/milvus/client/v2/entity"
)

func ExampleClient_Search_filter() {
        ctx, cancel := context.WithCancel(context.Background())
        defer cancel()

        milvusAddr := "127.0.0.1:19530"
        token := "root:Milvus"

        cli, err := client.New(ctx, &client.ClientConfig{
                Address: milvusAddr,
                APIKey:  token,
        })
        if err != nil {
                log.Fatal("failed to connect to milvus server: ", err.Error())
        }

        defer cli.Close(ctx)

        queryVector := []float32{0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592}

        resultSets, err := cli.Search(ctx, client.NewSearchOption(
                "filtered_search_collection", // collectionName
                3,             // limit
                []entity.Vector{entity.FloatVector(queryVector)},
        ).WithFilter(`color like "red%" and likes > 50`).WithOutputFields("color", "likes"))
        if err != nil {
                log.Fatal("failed to perform basic ANN search collection: ", err.Error())
        }

        for _, resultSet := range resultSets {
                log.Println("IDs: ", resultSet.IDs)
                log.Println("Scores: ", resultSet.Scores)
        }
        // Output:
        // IDs:
        // Scores:
}


import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});

const query_vector = [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592]

const res = await client.search({
    collection_name: "filtered_search_collection",
    data: [query_vector],
    limit: 5,
    // highlight-start
    filters: 'color like "red%" and likes > 50',
    output_fields: ["color", "likes"]
    // highlight-end
})

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "quick_setup",
    "data": [
        [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592]
    ],
    "annsField": "vector",
    "filter": "color like \"red%\" and likes > 50",
    "limit": 3,
    "outputFields": ["color", "likes"]
}'
# {"code":0,"cost":0,"data":[]}

Die in der Suchanfrage enthaltene Filterbedingung lautet color like "red%" and likes > 50. Sie verwendet den Operator and, um zwei Bedingungen einzuschließen: Die erste fragt nach Entitäten, deren Wert im Feld color mit red beginnt, und die andere fragt nach Entitäten, deren Wert im Feld likes größer als 50 ist. Es gibt nur zwei Entitäten, die diese Bedingungen erfüllen. Wenn das Top-K auf 3 gesetzt ist, berechnet Milvus den Abstand zwischen diesen beiden Entitäten zum Abfragevektor und gibt sie als Suchergebnisse zurück.

[
    {
        "id": 4, 
        "distance": 0.3345786594834839,
        "entity": {
            "vector": [0.4452349528804562, -0.8757026943054742, 0.8220779437047674, 0.46406290649483184, 0.30337481143159106], 
            "color": "red_4794", 
            "likes": 122
        }
    },
    {
        "id": 6, 
        "distance": 0.6638239834383389"entity": {
            "vector": [0.8371977790571115, -0.015764369584852833, -0.31062937026679327, -0.562666951622192, -0.8984947637863987], 
            "color": "red_9392", 
            "likes": 58
        }
    },
]

Weitere Informationen zu den Operatoren, die Sie beim Filtern von Metadaten verwenden können, finden Sie unter Metadatenfilterung.

Übersetzt vonDeepL

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

War diese Seite hilfreich?