milvus-logo
LFAI
首页
  • 用户指南

准备源数据

本页讨论的是在开始将数据批量插入 Collections 之前应该考虑的事项。

开始之前

目标 Collections 需要将源数据映射到其 Schema。下图显示了如何将可接受的源数据映射到目标 Collections 的模式。

Map data to schema 将数据映射到 Schema

您应仔细检查数据,并据此设计目标 Collections 的模式。

以上图中的 JSON 数据为例,行列表中有两个实体,每个行有六个字段。Collections 模式选择性地包括四个:ID向量标量_1标量_2

在设计 Schema 时,还有两点需要考虑:

  • 是否启用自动识别

    id字段作为 Collections 的主字段。要使主字段自动递增,可以在 Schema 中启用AutoID。在这种情况下,应从源数据的每一行中排除id字段。

  • 是否启用动态字段

    如果模式启用了动态字段,目标 Collections 还可以存储其预定义模式中未包含的字段。$meta字段是一个预留 JSON 字段,用于以键值对形式保存动态字段及其值。在上图中,字段dynamic_field_1dynamic_field_2及其值将作为键值对保存在$meta字段中。

下面的代码展示了如何为上图所示的 Collections 设置 Schema。

要获取更多信息,请参阅 create_schema()add_field()以获取更多信息。

要获取更多信息,请参阅 CollectionSchema以获取更多信息。

from pymilvus import MilvusClient, DataType

# You need to work out a collection schema out of your dataset.
schema = MilvusClient.create_schema(
    auto_id=False,
    enable_dynamic_field=True
)

DIM = 512

schema.add_field(field_name="id", datatype=DataType.INT64, is_primary=True),
schema.add_field(field_name="bool", datatype=DataType.BOOL),
schema.add_field(field_name="int8", datatype=DataType.INT8),
schema.add_field(field_name="int16", datatype=DataType.INT16),
schema.add_field(field_name="int32", datatype=DataType.INT32),
schema.add_field(field_name="int64", datatype=DataType.INT64),
schema.add_field(field_name="float", datatype=DataType.FLOAT),
schema.add_field(field_name="double", datatype=DataType.DOUBLE),
schema.add_field(field_name="varchar", datatype=DataType.VARCHAR, max_length=512),
schema.add_field(field_name="json", datatype=DataType.JSON),
schema.add_field(field_name="array_str", datatype=DataType.ARRAY, max_capacity=100, element_type=DataType.VARCHAR, max_length=128)
schema.add_field(field_name="array_int", datatype=DataType.ARRAY, max_capacity=100, element_type=DataType.INT64)
schema.add_field(field_name="float_vector", datatype=DataType.FLOAT_VECTOR, dim=DIM),
schema.add_field(field_name="binary_vector", datatype=DataType.BINARY_VECTOR, dim=DIM),
schema.add_field(field_name="float16_vector", datatype=DataType.FLOAT16_VECTOR, dim=DIM),
# schema.add_field(field_name="bfloat16_vector", datatype=DataType.BFLOAT16_VECTOR, dim=DIM),
schema.add_field(field_name="sparse_vector", datatype=DataType.SPARSE_FLOAT_VECTOR)

schema.verify()

print(schema)
import com.google.gson.Gson;
import com.google.gson.JsonObject;
import io.milvus.bulkwriter.BulkImport;
import io.milvus.bulkwriter.RemoteBulkWriter;
import io.milvus.bulkwriter.RemoteBulkWriterParam;
import io.milvus.bulkwriter.common.clientenum.BulkFileType;
import io.milvus.bulkwriter.common.clientenum.CloudStorage;
import io.milvus.bulkwriter.connect.S3ConnectParam;
import io.milvus.bulkwriter.connect.StorageConnectParam;
import io.milvus.bulkwriter.request.describe.MilvusDescribeImportRequest;
import io.milvus.bulkwriter.request.import_.MilvusImportRequest;
import io.milvus.bulkwriter.request.list.MilvusListImportJobsRequest;
import io.milvus.common.utils.Float16Utils;
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.common.DataType;
import io.milvus.v2.service.collection.request.*;

import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.*;
import java.util.concurrent.TimeUnit;

private static final String MINIO_ENDPOINT = CloudStorage.MINIO.getEndpoint("http://127.0.0.1:9000");
private static final String BUCKET_NAME = "a-bucket";
private static final String ACCESS_KEY = "minioadmin";
private static final String SECRET_KEY = "minioadmin";

private static final Integer DIM = 512;
private static final Gson GSON_INSTANCE = new Gson();

private static CreateCollectionReq.CollectionSchema createSchema() {
    CreateCollectionReq.CollectionSchema schema = CreateCollectionReq.CollectionSchema.builder()
        .enableDynamicField(true)
        .build();
    schema.addField(AddFieldReq.builder()
            .fieldName("id")
            .dataType(io.milvus.v2.common.DataType.Int64)
            .isPrimaryKey(Boolean.TRUE)
            .autoID(false)
            .build());
    schema.addField(AddFieldReq.builder()
            .fieldName("bool")
            .dataType(DataType.Bool)
            .build());
    schema.addField(AddFieldReq.builder()
            .fieldName("int8")
            .dataType(DataType.Int8)
            .build());
    schema.addField(AddFieldReq.builder()
            .fieldName("int16")
            .dataType(DataType.Int16)
            .build());
    schema.addField(AddFieldReq.builder()
            .fieldName("int32")
            .dataType(DataType.Int32)
            .build());
    schema.addField(AddFieldReq.builder()
            .fieldName("int64")
            .dataType(DataType.Int64)
            .build());
    schema.addField(AddFieldReq.builder()
            .fieldName("float")
            .dataType(DataType.Float)
            .build());
    schema.addField(AddFieldReq.builder()
            .fieldName("double")
            .dataType(DataType.Double)
            .build());
    schema.addField(AddFieldReq.builder()
            .fieldName("varchar")
            .dataType(DataType.VarChar)
            .maxLength(512)
            .build());
    schema.addField(AddFieldReq.builder()
            .fieldName("json")
            .dataType(io.milvus.v2.common.DataType.JSON)
            .build());
    schema.addField(AddFieldReq.builder()
            .fieldName("array_int")
            .dataType(io.milvus.v2.common.DataType.Array)
            .maxCapacity(100)
            .elementType(io.milvus.v2.common.DataType.Int64)
            .build());
    schema.addField(AddFieldReq.builder()
            .fieldName("array_str")
            .dataType(io.milvus.v2.common.DataType.Array)
            .maxCapacity(100)
            .elementType(io.milvus.v2.common.DataType.VarChar)
            .maxLength(128)
            .build());
    schema.addField(AddFieldReq.builder()
            .fieldName("float_vector")
            .dataType(io.milvus.v2.common.DataType.FloatVector)
            .dimension(DIM)
            .build());
    schema.addField(AddFieldReq.builder()
            .fieldName("binary_vector")
            .dataType(io.milvus.v2.common.DataType.BinaryVector)
            .dimension(DIM)
            .build());
    schema.addField(AddFieldReq.builder()
            .fieldName("float16_vector")
            .dataType(io.milvus.v2.common.DataType.Float16Vector)
            .dimension(DIM)
            .build());
    schema.addField(AddFieldReq.builder()
            .fieldName("sparse_vector")
            .dataType(io.milvus.v2.common.DataType.SparseFloatVector)
            .build());
    
    return schema;
}

设置 BulkWriter

BulkWriter是一种工具,用于将原始数据集转换为适合通过 RESTful Import API 导入的格式。它提供两种类型的写入器:

  • 本地写入器(LocalBulkWriter):读取指定的数据集,并将其转换为易于使用的格式。
  • 远程批量写入器:执行与 LocalBulkWriter 相同的任务,但会将转换后的数据文件额外传输到指定的远程对象存储桶。

RemoteBulkWriterLocalBulkWriter的不同之处在于,RemoteBulkWriter会将转换后的数据文件传输到目标对象存储桶。

设置 LocalBulkWriter

LocalBulkWriter会追加源数据集中的行,并将其提交到指定格式的本地文件中。

from pymilvus.bulk_writer import LocalBulkWriter, BulkFileType
# Use `from pymilvus import LocalBulkWriter, BulkFileType` 
# when you use pymilvus earlier than 2.4.2 

writer = LocalBulkWriter(
    schema=schema,
    local_path='.',
    segment_size=512 * 1024 * 1024, # Default value
    file_type=BulkFileType.PARQUET
)
import io.milvus.bulkwriter.LocalBulkWriter;
import io.milvus.bulkwriter.LocalBulkWriterParam;
import io.milvus.bulkwriter.common.clientenum.BulkFileType;

LocalBulkWriterParam localBulkWriterParam = LocalBulkWriterParam.newBuilder()
    .withCollectionSchema(schema)
    .withLocalPath(".")
    .withChunkSize(512 * 1024 * 1024)
    .withFileType(BulkFileType.PARQUET)
    .build();

LocalBulkWriter localBulkWriter = new LocalBulkWriter(localBulkWriterParam);

创建LocalBulkWriter 时,你应该

  • schema 中引用已创建的 Schema。
  • local_path 设置为输出目录。
  • file_type 设置为输出文件类型。
  • 如果您的数据集包含大量记录,建议您将segment_size 设置为适当的值,以分割数据。

有关参数设置的详细信息,请参阅 SDK 参考资料中的LocalBulkWriter

创建LocalBulkWriter 时,应

  • CollectionSchema() 中引用已创建的 Schema 。
  • withLocalPath() 中设置输出目录。
  • withFileType() 中设置输出文件类型。
  • 如果您的数据集包含大量记录,建议您通过将withChunkSize() 设置为适当的值来分割数据。

有关参数设置的详细信息,请参阅 SDK 参考资料中的 LocalBulkWriter。

设置 RemoteBulkWriter

RemoteBulkWriter不会将添加的数据提交到本地文件,而是将它们提交到远程存储桶。因此,在创建RemoteBulkWriter 之前,你应该先设置一个ConnectParam对象。

from pymilvus.bulk_writer import RemoteBulkWriter
# Use `from pymilvus import RemoteBulkWriter` 
# when you use pymilvus earlier than 2.4.2 

# Third-party constants
ACCESS_KEY="minioadmin"
SECRET_KEY="minioadmin"
BUCKET_NAME="a-bucket"

# Connections parameters to access the remote bucket
conn = RemoteBulkWriter.S3ConnectParam(
    endpoint="localhost:9000", # the default MinIO service started along with Milvus
    access_key=ACCESS_KEY,
    secret_key=SECRET_KEY,
    bucket_name=BUCKET_NAME,
    secure=False
)

from pymilvus.bulk_writer import BulkFileType
# Use `from pymilvus import BulkFileType` 
# when you use pymilvus earlier than 2.4.2 

writer = RemoteBulkWriter(
    schema=schema,
    remote_path="/",
    connect_param=conn,
    file_type=BulkFileType.PARQUET
)

print('bulk writer created.')
private static RemoteBulkWriter createRemoteBulkWriter(CreateCollectionReq.CollectionSchema collectionSchema) throws IOException {
    StorageConnectParam connectParam = S3ConnectParam.newBuilder()
            .withEndpoint(MINIO_ENDPOINT)
            .withBucketName(BUCKET_NAME)
            .withAccessKey(ACCESS_KEY)
            .withSecretKey(SECRET_KEY)
            .build();
    RemoteBulkWriterParam bulkWriterParam = RemoteBulkWriterParam.newBuilder()
            .withCollectionSchema(collectionSchema)
            .withRemotePath("/")
            .withConnectParam(connectParam)
            .withFileType(BulkFileType.PARQUET)
            .build();
    return new RemoteBulkWriter(bulkWriterParam);
}

一旦连接参数准备就绪,你就可以在RemoteBulkWriter中引用它,如下所示:

from pymilvus.bulk_writer import BulkFileType
# Use `from pymilvus import BulkFileType` 
# when you use pymilvus earlier than 2.4.2 

writer = RemoteBulkWriter(
    schema=schema,
    remote_path="/",
    connect_param=conn,
    file_type=BulkFileType.PARQUET
)
import io.milvus.bulkwriter.RemoteBulkWriter;
import io.milvus.bulkwriter.RemoteBulkWriterParam;

RemoteBulkWriterParam remoteBulkWriterParam = RemoteBulkWriterParam.newBuilder()
    .withCollectionSchema(schema)
    .withConnectParam(storageConnectParam)
    .withChunkSize(512 * 1024 * 1024)
    .withRemotePath("/")
    .withFileType(BulkFileType.PARQUET)
    .build();

RemoteBulkWriter remoteBulkWriter = new RemoteBulkWriter(remoteBulkWriterParam);

除了connect_param 之外,创建RemoteBulkWriter的参数与创建LocalBulkWriter 的参数基本相同。有关参数设置的详细信息,请参阅 SDK 参考资料中的RemoteBulkWriterConnectParam

StorageConnectParam 外,创建RemoteBulkWriter的参数与创建LocalBulkWriter 的参数基本相同。有关参数设置的详细信息,请参阅 SDK 参考资料中的 RemoteBulkWriter 和 StorageConnectParam。

开始写入

BulkWriter有两个方法:append_row() 从源数据集添加记录,以及commit() 将添加的记录提交到本地文件或远程存储桶。

BulkWriter有两个方法:appendRow() 从源数据集添加行,commit() 将添加的行提交到本地文件或远程数据桶。

为演示起见,下面的代码添加了随机生成的数据。

import random, string, json
import numpy as np
import tensorflow as tf

def generate_random_str(length=5):
    letters = string.ascii_uppercase
    digits = string.digits
    
    return ''.join(random.choices(letters + digits, k=length))

# optional input for binary vector:
# 1. list of int such as [1, 0, 1, 1, 0, 0, 1, 0]
# 2. numpy array of uint8
def gen_binary_vector(to_numpy_arr):
    raw_vector = [random.randint(0, 1) for i in range(DIM)]
    if to_numpy_arr:
        return np.packbits(raw_vector, axis=-1)
    return raw_vector

# optional input for float vector:
# 1. list of float such as [0.56, 1.859, 6.55, 9.45]
# 2. numpy array of float32
def gen_float_vector(to_numpy_arr):
    raw_vector = [random.random() for _ in range(DIM)]
    if to_numpy_arr:
        return np.array(raw_vector, dtype="float32")
    return raw_vector

# # optional input for bfloat16 vector:
# # 1. list of float such as [0.56, 1.859, 6.55, 9.45]
# # 2. numpy array of bfloat16
# def gen_bf16_vector(to_numpy_arr):
#     raw_vector = [random.random() for _ in range(DIM)]
#     if to_numpy_arr:
#         return tf.cast(raw_vector, dtype=tf.bfloat16).numpy()
#     return raw_vector

# optional input for float16 vector:
# 1. list of float such as [0.56, 1.859, 6.55, 9.45]
# 2. numpy array of float16
def gen_fp16_vector(to_numpy_arr):
    raw_vector = [random.random() for _ in range(DIM)]
    if to_numpy_arr:
        return np.array(raw_vector, dtype=np.float16)
    return raw_vector

# optional input for sparse vector:
# only accepts dict like {2: 13.23, 45: 0.54} or {"indices": [1, 2], "values": [0.1, 0.2]}
# note: no need to sort the keys
def gen_sparse_vector(pair_dict: bool):
    raw_vector = {}
    dim = random.randint(2, 20)
    if pair_dict:
        raw_vector["indices"] = [i for i in range(dim)]
        raw_vector["values"] = [random.random() for _ in range(dim)]
    else:
        for i in range(dim):
            raw_vector[i] = random.random()
    return raw_vector

for i in range(10000):
    writer.append_row({
        "id": np.int64(i),
        "bool": True if i % 3 == 0 else False,
        "int8": np.int8(i%128),
        "int16": np.int16(i%1000),
        "int32": np.int32(i%100000),
        "int64": np.int64(i),
        "float": np.float32(i/3),
        "double": np.float64(i/7),
        "varchar": f"varchar_{i}",
        "json": json.dumps({"dummy": i, "ok": f"name_{i}"}),
        "array_str": np.array([f"str_{k}" for k in range(5)], np.dtype("str")),
        "array_int": np.array([k for k in range(10)], np.dtype("int64")),
        "float_vector": gen_float_vector(True),
        "binary_vector": gen_binary_vector(True),
        "float16_vector": gen_fp16_vector(True),
        # "bfloat16_vector": gen_bf16_vector(True),
        "sparse_vector": gen_sparse_vector(True),
        f"dynamic_{i}": i,
    })
    if (i+1)%1000 == 0:
        writer.commit()
        print('committed')

print(writer.batch_files)
private static byte[] genBinaryVector() {
    Random ran = new Random();
    int byteCount = DIM / 8;
    ByteBuffer vector = ByteBuffer.allocate(byteCount);
    for (int i = 0; i < byteCount; ++i) {
        vector.put((byte) ran.nextInt(Byte.MAX_VALUE));
    }
    return vector.array();
}

private static List<Float> genFloatVector() {
    Random ran = new Random();
    List<Float> vector = new ArrayList<>();
    for (int i = 0; i < DIM; ++i) {
        vector.add(ran.nextFloat());
    }
    return vector;
}

private static byte[] genFloat16Vector() {
    List<Float> originalVector = genFloatVector();
    return Float16Utils.f32VectorToFp16Buffer(originalVector).array();
}

private static SortedMap<Long, Float> genSparseVector() {
    Random ran = new Random();
    SortedMap<Long, Float> sparse = new TreeMap<>();
    int dim = ran.nextInt(18) + 2; // [2, 20)
    for (int i = 0; i < dim; ++i) {
        sparse.put((long)ran.nextInt(1000000), ran.nextFloat());
    }
    return sparse;
}

private static List<String> genStringArray(int length) {
    List<String> arr = new ArrayList<>();
    for (int i = 0; i < length; i++) {
        arr.add("str_" + i);
    }
    return arr;
}

private static List<Long> genIntArray(int length) {
    List<Long> arr = new ArrayList<>();
    for (long i = 0; i < length; i++) {
        arr.add(i);
    }
    return arr;
}

private static RemoteBulkWriter createRemoteBulkWriter(CreateCollectionReq.CollectionSchema collectionSchema) throws IOException {
    StorageConnectParam connectParam = S3ConnectParam.newBuilder()
            .withEndpoint(MINIO_ENDPOINT)
            .withBucketName(BUCKET_NAME)
            .withAccessKey(ACCESS_KEY)
            .withSecretKey(SECRET_KEY)
            .build();
    RemoteBulkWriterParam bulkWriterParam = RemoteBulkWriterParam.newBuilder()
            .withCollectionSchema(collectionSchema)
            .withRemotePath("/")
            .withConnectParam(connectParam)
            .withFileType(BulkFileType.PARQUET)
            .build();
    return new RemoteBulkWriter(bulkWriterParam);
}

private static List<List<String>> uploadData() throws Exception {
    CreateCollectionReq.CollectionSchema collectionSchema = createSchema();
    try (RemoteBulkWriter remoteBulkWriter = createRemoteBulkWriter(collectionSchema)) {
        for (int i = 0; i < 10000; ++i) {
            JsonObject rowObject = new JsonObject();

            rowObject.addProperty("id", i);
            rowObject.addProperty("bool", i % 3 == 0);
            rowObject.addProperty("int8", i % 128);
            rowObject.addProperty("int16", i % 1000);
            rowObject.addProperty("int32", i % 100000);
            rowObject.addProperty("int64", i);
            rowObject.addProperty("float", i / 3);
            rowObject.addProperty("double", i / 7);
            rowObject.addProperty("varchar", "varchar_" + i);
            rowObject.addProperty("json", String.format("{\"dummy\": %s, \"ok\": \"name_%s\"}", i, i));
            rowObject.add("array_str", GSON_INSTANCE.toJsonTree(genStringArray(5)));
            rowObject.add("array_int", GSON_INSTANCE.toJsonTree(genIntArray(10)));
            rowObject.add("float_vector", GSON_INSTANCE.toJsonTree(genFloatVector()));
            rowObject.add("binary_vector", GSON_INSTANCE.toJsonTree(genBinaryVector()));
            rowObject.add("float16_vector", GSON_INSTANCE.toJsonTree(genFloat16Vector()));
            rowObject.add("sparse_vector", GSON_INSTANCE.toJsonTree(genSparseVector()));
            rowObject.addProperty("dynamic", "dynamic_" + i);

            remoteBulkWriter.appendRow(rowObject);

            if ((i+1)%1000 == 0) {
                remoteBulkWriter.commit(false);
            }
        }

        List<List<String>> batchFiles = remoteBulkWriter.getBatchFiles();
        System.out.println(batchFiles);
        return batchFiles;
    } catch (Exception e) {
        throw e;
    }
}

public static void main(String[] args) throws Exception {
    List<List<String>> batchFiles = uploadData();
}

验证结果

要检查结果,可以通过打印写入器的batch_files 属性来获取实际输出路径。

要检查结果,可通过打印写入器的getBatchFiles() 方法获取实际输出路径。

print(writer.batch_files)

# [['d4220a9e-45be-4ccb-8cb5-bf09304b9f23/1.parquet'],
#  ['d4220a9e-45be-4ccb-8cb5-bf09304b9f23/2.parquet']]
// localBulkWriter.getBatchFiles();
remoteBulkWriter.getBatchFiles();

// 

// Close the BulkWriter
try {
    localBulkWriter.close();
    remoteBulkWriter.close();            
} catch (Exception e) {
    // TODO: handle exception
    e.printStackTrace();
}

BulkWriter会生成一个 UUID,在提供的输出目录中使用 UUID 创建一个子文件夹,并将所有生成的文件放入该子文件夹中。单击此处下载准备好的示例数据。

可能的文件夹结构如下

# JSON
├── folder
│   └── 45ae1139-1d87-4aff-85f5-0039111f9e6b
│       └── 1.json 

# Parquet
├── folder
│   └── 45ae1139-1d87-4aff-85f5-0039111f9e6b
│       └── 1.parquet 

翻译自DeepLogo

想要更快、更简单、更好用的 Milvus SaaS服务 ?

Zilliz Cloud是基于Milvus的全托管向量数据库,拥有更高性能,更易扩展,以及卓越性价比

免费试用 Zilliz Cloud
反馈

此页对您是否有帮助?