milvus-logo
LFAI
Home
  • Guia do utilizador

Ativar o campo dinâmico

Esta página explica como utilizar o campo dinâmico numa coleção para uma inserção e recuperação flexíveis de dados.

Descrição geral

O Milvus permite-lhe definir o esquema de uma coleção, definindo o nome e o tipo de dados de cada campo específico, de modo a poder criar índices nesses campos para melhorar o desempenho da pesquisa.

Uma vez definido um campo, é necessário incluí-lo quando insere dados. E se alguns campos não estiverem sempre presentes em todas as suas entradas de dados? É aqui que entra o campo dinâmico.

O campo dinâmico numa coleção é um campo JSON reservado chamado $meta. Pode conter campos não definidos pelo esquema e os seus valores como pares de valores chave. Utilizando o campo dinâmico, pode pesquisar e consultar tanto os campos definidos pelo esquema como quaisquer campos não definidos pelo esquema que possam ter.

Ativar o campo dinâmico

Ao definir um esquema para uma coleção, pode definir enable_dynamic_field como True para ativar o campo dinâmico reservado, indicando que quaisquer campos não definidos pelo esquema e os respectivos valores inseridos posteriormente serão guardados como pares de valores chave no campo dinâmico reservado.

O seguinte excerto cria uma coleção com dois campos definidos pelo esquema, nomeadamente id e vetor, e ativa o campo dinâmico.

Para mais informações sobre parâmetros, consulte create_collection() na referência do SDK.

Para obter mais informações sobre parâmetros, consulte createCollection() na referência do SDK.

Para mais informações sobre os parâmetros, consultar createCollection() na referência do SDK.

import random, time
from pymilvus import connections, MilvusClient, DataType

SERVER_ADDR = "http://localhost:19530"

# 1. Set up a Milvus client
client = MilvusClient(
    uri=SERVER_ADDR
)

# 2. Create a collection
schema = MilvusClient.create_schema(
    auto_id=False,
    enable_dynamic_field=True,
)

schema.add_field(field_name="id", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=5)

index_params = MilvusClient.prepare_index_params()

index_params.add_index(
    field_name="id",
    index_type="STL_SORT"
)

index_params.add_index(
    field_name="vector",
    index_type="IVF_FLAT",
    metric_type="L2",
    params={"nlist": 1024}
)

client.create_collection(
    collection_name="test_collection",
    schema=schema,
    index_params=index_params
)

res = client.get_load_state(
    collection_name="test_collection"
)

print(res)

# Output
#
# {
#     "state": "<LoadState: Loaded>"
# }
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.common.DataType;
import io.milvus.v2.common.IndexParam;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;
import io.milvus.v2.service.collection.request.GetLoadStateReq;

String CLUSTER_ENDPOINT = "http://localhost:19530";

// 1. Connect to Milvus server
ConnectConfig connectConfig = ConnectConfig.builder()
    .uri(CLUSTER_ENDPOINT)
    .build();

MilvusClientV2 client = new MilvusClientV2(connectConfig);

// 2. Create a collection in customized setup mode

// 2.1 Create schema
CreateCollectionReq.CollectionSchema schema = client.createSchema();

// 2.2 Add fields to schema
schema.addField(AddFieldReq.builder().fieldName("id").dataType(DataType.Int64).isPrimaryKey(true).autoID(false).build());
schema.addField(AddFieldReq.builder().fieldName("vector").dataType(DataType.FloatVector).dimension(5).build());

// 2.3 Prepare index parameters
IndexParam indexParamForIdField = IndexParam.builder()
    .fieldName("id")
    .indexType(IndexParam.IndexType.STL_SORT)
    .build();

IndexParam indexParamForVectorField = IndexParam.builder()
    .fieldName("vector")
    .indexType(IndexParam.IndexType.IVF_FLAT)
    .metricType(IndexParam.MetricType.IP)
    .extraParams(Map.of("nlist", 1024))
    .build();

List<IndexParam> indexParams = new ArrayList<>();
indexParams.add(indexParamForIdField);
indexParams.add(indexParamForVectorField);

// 2.4 Create a collection with schema and index parameters
CreateCollectionReq customizedSetupReq = CreateCollectionReq.builder()
    .collectionName("customized_setup")
    .collectionSchema(schema)
    .indexParams(indexParams)
    .enableDynamicField(true)
    .build();

client.createCollection(customizedSetupReq);

Thread.sleep(5000);

// 2.5 Get load state of the collection
GetLoadStateReq customSetupLoadStateReq1 = GetLoadStateReq.builder()
    .collectionName("customized_setup")
    .build();

boolean res = client.getLoadState(customSetupLoadStateReq1);

System.out.println(res);

// Output:
// true
const { MilvusClient, DataType, sleep } = require("@zilliz/milvus2-sdk-node")

const address = "http://localhost:19530"

async function main() {
// 1. Set up a Milvus Client
client = new MilvusClient({address}); 

// 2. Create a collection
// 2.1 Define fields
const fields = [
    {
        name: "id",
        data_type: DataType.Int64,
        is_primary_key: true,
        auto_id: false
    },
    {
        name: "vector",
        data_type: DataType.FloatVector,
        dim: 5
    },
]

// 2.2 Prepare index parameters
const index_params = [{
    field_name: "id",
    index_type: "STL_SORT"
},{
    field_name: "vector",
    index_type: "IVF_FLAT",
    metric_type: "IP",
    params: { nlist: 1024}
}]

// 2.3 Create a collection with fields and index parameters
res = await client.createCollection({
    collection_name: "test_collection",
    fields: fields, 
    index_params: index_params,
    enable_dynamic_field: true
})

console.log(res.error_code)

// Output
// 
// Success
// 

res = await client.getLoadState({
    collection_name: "test_collection",
})  

console.log(res.state)

// Output
// 
// LoadStateLoaded
// 

Inserir dados dinâmicos

Assim que a coleção for criada, pode começar a inserir dados, incluindo os dados dinâmicos na coleção.

Preparar dados

Nesta secção, é necessário preparar alguns dados gerados aleatoriamente para a inserção posterior.

colors = ["green", "blue", "yellow", "red", "black", "white", "purple", "pink", "orange", "brown", "grey"]
data = []

for i in range(1000):
    current_color = random.choice(colors)
    current_tag = random.randint(1000, 9999)
    data.append({
        "id": i,
        "vector": [ random.uniform(-1, 1) for _ in range(5) ],
        "color": current_color,
        "tag": current_tag,
        "color_tag": f"{current_color}_{str(current_tag)}"
    })

print(data[0])
List<String> colors = Arrays.asList("green", "blue", "yellow", "red", "black", "white", "purple", "pink", "orange", "brown", "grey");
List<JSONObject> data = new ArrayList<>();

for (int i=0; i<1000; i++) {
    Random rand = new Random();
    String current_color = colors.get(rand.nextInt(colors.size()-1));
    int current_tag = rand.nextInt(8999) + 1000;
    JSONObject row = new JSONObject();
    row.put("id", Long.valueOf(i));
    row.put("vector", Arrays.asList(rand.nextFloat(), rand.nextFloat(), rand.nextFloat(), rand.nextFloat(), rand.nextFloat()));
    row.put("color", current_color);
    row.put("tag", current_tag);
    row.put("color_tag", current_color + "_" + String.valueOf(rand.nextInt(8999) + 1000));
    data.add(row);
}

System.out.println(JSONObject.toJSON(data.get(0)));
const colors = ["green", "blue", "yellow", "red", "black", "white", "purple", "pink", "orange", "brown", "grey"]
var data = []

for (let i = 0; i < 1000; i++) {
    const current_color = colors[Math.floor(Math.random() * colors.length)]
    const current_tag = Math.floor(Math.random() * 8999 + 1000)
    data.push({
        id: i,
        vector: [Math.random(), Math.random(), Math.random(), Math.random(), Math.random()],
        color: current_color,
        tag: current_tag,
        color_tag: `${current_color}_${current_tag}`
    })
}

console.log(data[0])

Pode ver a estrutura dos dados gerados verificando a sua primeira entrada.

{
    id: 0,
    vector: [
        0.1275656405044483,
        0.47417858592773277,
        0.13858264437643286,
        0.2390904907020377,
        0.8447862593689635
    ],
    color: 'blue',
    tag: 2064,
    color_tag: 'blue_2064'
}

Inserir dados

Em seguida, pode inserir com segurança os dados na coleção.

Para mais informações sobre parâmetros, consulte insert() na referência do SDK.

Para obter mais informações sobre os parâmetros, consultar insert() na referência do SDK.

Para mais informações sobre os parâmetros, consultar insert() na referência do SDK.

res = client.insert(
    collection_name="test_collection",
    data=data,
)

print(res)

# Output
#
# {
#     "insert_count": 1000,
#     "ids": [
#         0,
#         1,
#         2,
#         3,
#         4,
#         5,
#         6,
#         7,
#         8,
#         9,
#         "(990 more items hidden)"
#     ]
# }

time.sleep(5)
// 3.1 Insert data into the collection
InsertReq insertReq = InsertReq.builder()
    .collectionName("customized_setup")
    .data(data)
    .build();

InsertResp insertResp = client.insert(insertReq);

System.out.println(JSONObject.toJSON(insertResp));

// Output:
// {"insertCnt": 1000}

Thread.sleep(5000);
res = await client.insert({
    collection_name: "test_collection",
    data: data,
})

console.log(res.insert_cnt)

// Output
// 
// 1000
// 

await sleep(5000)

Pesquisa com campos dinâmicos

Se tiver criado a coleção com o campo dinâmico ativado e inserido campos não definidos pelo esquema, pode utilizar estes campos na expressão de filtro de uma pesquisa ou consulta da seguinte forma.

Para mais informações sobre parâmetros, consulte search() na referência do SDK.

Para obter mais informações sobre parâmetros, consulte search() na referência do SDK.

Para obter mais informações sobre parâmetros, consulte search() na referência do SDK.

# 4. Search with dynamic fields
query_vectors = [[0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592]]

res = client.search(
    collection_name="test_collection",
    data=query_vectors,
    filter="color in [\"red\", \"green\"]",
    search_params={"metric_type": "L2", "params": {"nprobe": 10}},
    limit=3
)

print(res)

# Output
#
# [
#     [
#         {
#             "id": 863,
#             "distance": 0.188413605093956,
#             "entity": {
#                 "id": 863,
#                 "color_tag": "red_2371"
#             }
#         },
#         {
#             "id": 799,
#             "distance": 0.29188022017478943,
#             "entity": {
#                 "id": 799,
#                 "color_tag": "red_2235"
#             }
#         },
#         {
#             "id": 564,
#             "distance": 0.3492690920829773,
#             "entity": {
#                 "id": 564,
#                 "color_tag": "red_9186"
#             }
#         }
#     ]
# ]
// 4. Search with non-schema-defined fields
List<List<Float>> queryVectors = Arrays.asList(Arrays.asList(0.3580376395471989f, -0.6023495712049978f, 0.18414012509913835f, -0.26286205330961354f, 0.9029438446296592f));

SearchReq searchReq = SearchReq.builder()
    .collectionName("customized_setup")
    .data(queryVectors)
    .filter("$meta[\"color\"] in [\"red\", \"green\"]")
    .outputFields(List.of("id", "color_tag"))
    .topK(3)
    .build();

SearchResp searchResp = client.search(searchReq);

System.out.println(JSONObject.toJSON(searchResp));

// Output:
// {"searchResults": [[
//     {
//         "distance": 1.3159835,
//         "id": 979,
//         "entity": {
//             "color_tag": "red_7155",
//             "id": 979
//         }
//     },
//     {
//         "distance": 1.0744804,
//         "id": 44,
//         "entity": {
//             "color_tag": "green_8006",
//             "id": 44
//         }
//     },
//     {
//         "distance": 1.0060014,
//         "id": 617,
//         "entity": {
//             "color_tag": "red_4056",
//             "id": 617
//         }
//     }
// ]]}
// 4. Search with non-schema-defined fields
const query_vectors = [[0.1, 0.2, 0.3, 0.4, 0.5]]

res = await client.search({
    collection_name: "test_collection",
    data: query_vectors,
    filter: "color in [\"red\", \"green\"]",
    output_fields: ["color_tag"],
    limit: 3
})

console.log(res.results)

// Output
// 
// [
//   { score: 1.2284551858901978, id: '301', color_tag: 'red_1270' },
//   { score: 1.2195171117782593, id: '205', color_tag: 'red_2780' },
//   { score: 1.2055039405822754, id: '487', color_tag: 'red_6653' }
// ]
// 

Recapitulações

É importante notar que color, tag e color_tag não estão presentes quando se define o esquema de coleção, mas é possível utilizá-los como campos definidos pelo esquema quando se efectuam pesquisas e consultas.

Se o nome de um campo não definido pelo esquema contiver caracteres que não sejam dígitos, letras e sublinhados, como sinais de mais (+), asteriscos (*) ou cifrões ($), será necessário incluir a chave em $meta[], conforme mostrado no seguinte trecho de código ao usá-lo em uma expressão booleana ou ao incluí-lo nos campos de saída.

... 
filter='$meta["$key"] in ["a", "b", "c"]', 
output_fields='$meta["$key"]'  
...

Traduzido porDeepLogo

Feedback

Esta página foi útil?