milvus-logo
LFAI
Home
  • Tutoriais

Construir RAG com Milvus

Open In Colab

Neste tutorial, vamos mostrar-lhe como construir um pipeline RAG (Retrieval-Augmented Generation) com o Milvus.

O sistema RAG combina um sistema de recuperação com um modelo generativo para gerar um novo texto com base num determinado pedido. O sistema começa por recuperar documentos relevantes de um corpus utilizando o Milvus e, em seguida, utiliza um modelo generativo para gerar um novo texto com base nos documentos recuperados.

Preparação

Dependências e ambiente

$ pip install --upgrade pymilvus openai requests tqdm

Se estiver a utilizar o Google Colab, para ativar as dependências que acabou de instalar, poderá ter de reiniciar o tempo de execução. (Clique no menu "Runtime" (Tempo de execução) na parte superior do ecrã e selecione "Restart session" (Reiniciar sessão) no menu pendente).

Neste exemplo, vamos utilizar o OpenAI como LLM. Deve preparar a chave api OPENAI_API_KEY como uma variável de ambiente.

import os

os.environ["OPENAI_API_KEY"] = "sk-***********"

Preparar os dados

Utilizamos as páginas de FAQ da Documentação do Milvus 2.4.x como conhecimento privado no nosso RAG, que é uma boa fonte de dados para um pipeline RAG simples.

Descarregue o ficheiro zip e extraia os documentos para a pasta milvus_docs.

$ wget https://github.com/milvus-io/milvus-docs/releases/download/v2.4.6-preview/milvus_docs_2.4.x_en.zip
$ unzip -q milvus_docs_2.4.x_en.zip -d milvus_docs

Carregamos todos os ficheiros markdown da pasta milvus_docs/en/faq. Para cada documento, utilizamos simplesmente "#" para separar o conteúdo do ficheiro, o que pode separar aproximadamente o conteúdo de cada parte principal do ficheiro markdown.

from glob import glob

text_lines = []

for file_path in glob("milvus_docs/en/faq/*.md", recursive=True):
    with open(file_path, "r") as file:
        file_text = file.read()

    text_lines += file_text.split("# ")

Preparar o modelo de incorporação

Inicializamos o cliente OpenAI para preparar o modelo de incorporação.

from openai import OpenAI

openai_client = OpenAI()

Defina uma função para gerar texto incorporado utilizando o cliente OpenAI. Usamos o modelo text-embedding-3-small como exemplo.

def emb_text(text):
    return (
        openai_client.embeddings.create(input=text, model="text-embedding-3-small")
        .data[0]
        .embedding
    )

Gerar um embedding de teste e imprimir a sua dimensão e os primeiros elementos.

test_embedding = emb_text("This is a test")
embedding_dim = len(test_embedding)
print(embedding_dim)
print(test_embedding[:10])
1536
[0.00988506618887186, -0.005540902726352215, 0.0068014683201909065, -0.03810417652130127, -0.018254263326525688, -0.041231658309698105, -0.007651153020560741, 0.03220026567578316, 0.01892443746328354, 0.00010708322952268645]

Carregar dados no Milvus

Criar a coleção

from pymilvus import MilvusClient

milvus_client = MilvusClient(uri="./milvus_demo.db")

collection_name = "my_rag_collection"

Quanto ao argumento de MilvusClient:

  • Definir o uri como um ficheiro local, por exemplo,./milvus.db, é o método mais conveniente, pois utiliza automaticamente o Milvus Lite para armazenar todos os dados neste ficheiro.
  • Se tiver uma grande escala de dados, pode configurar um servidor Milvus mais eficiente em docker ou kubernetes. Nesta configuração, utilize o uri do servidor, por exemplo,http://localhost:19530, como o seu uri.
  • Se pretender utilizar o Zilliz Cloud, o serviço de nuvem totalmente gerido para o Milvus, ajuste os endereços uri e token, que correspondem ao Public Endpoint e à chave Api no Zilliz Cloud.

Verificar se a coleção já existe e eliminá-la se existir.

if milvus_client.has_collection(collection_name):
    milvus_client.drop_collection(collection_name)

Criar uma nova coleção com os parâmetros especificados.

Se não especificarmos qualquer informação de campo, o Milvus criará automaticamente um campo id por defeito para a chave primária e um campo vector para armazenar os dados vectoriais. Um campo JSON reservado é utilizado para armazenar campos não definidos pelo esquema e os respectivos valores.

milvus_client.create_collection(
    collection_name=collection_name,
    dimension=embedding_dim,
    metric_type="IP",  # Inner product distance
    consistency_level="Strong",  # Strong consistency level
)

Inserir dados

Itere pelas linhas de texto, crie embeddings e, em seguida, insira os dados no Milvus.

Aqui está um novo campo text, que é um campo não definido no esquema da coleção. Será automaticamente adicionado ao campo dinâmico JSON reservado, que pode ser tratado como um campo normal a um nível elevado.

from tqdm import tqdm

data = []

for i, line in enumerate(tqdm(text_lines, desc="Creating embeddings")):
    data.append({"id": i, "vector": emb_text(line), "text": line})

milvus_client.insert(collection_name=collection_name, data=data)
Creating embeddings: 100%|██████████| 72/72 [00:27<00:00,  2.67it/s]





{'insert_count': 72,
 'ids': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71],
 'cost': 0}

Construir RAG

Recuperar dados para uma consulta

Vamos especificar uma pergunta frequente sobre o Milvus.

question = "How is data stored in milvus?"

Pesquise a pergunta na coleção e obtenha as 3 principais correspondências semânticas.

search_res = milvus_client.search(
    collection_name=collection_name,
    data=[
        emb_text(question)
    ],  # Use the `emb_text` function to convert the question to an embedding vector
    limit=3,  # Return top 3 results
    search_params={"metric_type": "IP", "params": {}},  # Inner product distance
    output_fields=["text"],  # Return the text field
)

Vejamos os resultados da pesquisa da consulta

import json

retrieved_lines_with_distances = [
    (res["entity"]["text"], res["distance"]) for res in search_res[0]
]
print(json.dumps(retrieved_lines_with_distances, indent=4))
[
    [
        " Where does Milvus store data?\n\nMilvus deals with two types of data, inserted data and metadata. \n\nInserted data, including vector data, scalar data, and collection-specific schema, are stored in persistent storage as incremental log. Milvus supports multiple object storage backends, including [MinIO](https://min.io/), [AWS S3](https://aws.amazon.com/s3/?nc1=h_ls), [Google Cloud Storage](https://cloud.google.com/storage?hl=en#object-storage-for-companies-of-all-sizes) (GCS), [Azure Blob Storage](https://azure.microsoft.com/en-us/products/storage/blobs), [Alibaba Cloud OSS](https://www.alibabacloud.com/product/object-storage-service), and [Tencent Cloud Object Storage](https://www.tencentcloud.com/products/cos) (COS).\n\nMetadata are generated within Milvus. Each Milvus module has its own metadata that are stored in etcd.\n\n###",
        0.7883545756340027
    ],
    [
        "How does Milvus handle vector data types and precision?\n\nMilvus supports Binary, Float32, Float16, and BFloat16 vector types.\n\n- Binary vectors: Store binary data as sequences of 0s and 1s, used in image processing and information retrieval.\n- Float32 vectors: Default storage with a precision of about 7 decimal digits. Even Float64 values are stored with Float32 precision, leading to potential precision loss upon retrieval.\n- Float16 and BFloat16 vectors: Offer reduced precision and memory usage. Float16 is suitable for applications with limited bandwidth and storage, while BFloat16 balances range and efficiency, commonly used in deep learning to reduce computational requirements without significantly impacting accuracy.\n\n###",
        0.6757288575172424
    ],
    [
        "How much does Milvus cost?\n\nMilvus is a 100% free open-source project.\n\nPlease adhere to [Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0) when using Milvus for production or distribution purposes.\n\nZilliz, the company behind Milvus, also offers a fully managed cloud version of the platform for those that don't want to build and maintain their own distributed instance. [Zilliz Cloud](https://zilliz.com/cloud) automatically maintains data reliability and allows users to pay only for what they use.\n\n###",
        0.6421123147010803
    ]
]

Utilizar o LLM para obter uma resposta RAG

Converter os documentos recuperados num formato de cadeia de caracteres.

context = "\n".join(
    [line_with_distance[0] for line_with_distance in retrieved_lines_with_distances]
)

Definir avisos do sistema e do utilizador para o Modelo de Linguagem. Este prompt é montado com os documentos recuperados do Milvus.

SYSTEM_PROMPT = """
Human: You are an AI assistant. You are able to find answers to the questions from the contextual passage snippets provided.
"""
USER_PROMPT = f"""
Use the following pieces of information enclosed in <context> tags to provide an answer to the question enclosed in <question> tags.
<context>
{context}
</context>
<question>
{question}
</question>
"""

Utilizar o OpenAI ChatGPT para gerar uma resposta com base nos avisos.

response = openai_client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=[
        {"role": "system", "content": SYSTEM_PROMPT},
        {"role": "user", "content": USER_PROMPT},
    ],
)
print(response.choices[0].message.content)
Milvus stores data in persistent storage as incremental logs, including inserted data (vector data, scalar data, and collection-specific schema) and metadata. Inserted data is stored in various object storage backends like MinIO, AWS S3, Google Cloud Storage, Azure Blob Storage, Alibaba Cloud OSS, and Tencent Cloud Object Storage. Metadata generated within Milvus is stored in etcd.

Implementação rápida

Para saber como iniciar uma demonstração online com este tutorial, consulte a aplicação de exemplo.

Traduzido porDeepLogo

Feedback

Esta página foi útil?