Milvus
Zilliz
Home
  • User Guide
  • Home
  • Docs
  • User Guide

  • Schema & Data Fields

  • JSON Field

JSON Field

Milvus allows you to store and index structured data within a single field using the JSON data type. This enables flexible schemas with nested attributes while still allowing efficient filtering via JSON indexing.

What is a JSON field?

A JSON field is a schema-defined field in Milvus that stores structured key-value data. The values can include strings, numbers, booleans, arrays, or deeply nested objects.

Here’s an example of what a JSON field might look like in a document:

{
  "metadata": {
    "category": "electronics",
    "brand": "BrandA",
    "in_stock": true,
    "price": 99.99,
    "string_price": "99.99",
    "tags": ["clearance", "summer_sale"],
    "supplier": {
      "name": "SupplierX",
      "country": "USA",
      "contact": {
        "email": "support@supplierx.com",
        "phone": "+1-800-555-0199"
      }
    }
  }
}

In this example:

  • metadata is the JSON field defined in the schema.

  • You can store flat values (e.g. category, in_stock), arrays (tags), and nested objects (supplier).

Define a JSON field in the schema

To use a JSON field, explicitly define it in the collection schema by specifying the DataType as JSON.

The example below creates a collection with its schema containing these fields:

  • The primary key (product_id)

  • A vector field (mandatory for each collection)

  • A metadata field of type JSON, which can store structured data like flat values, arrays, or nested objects

from pymilvus import MilvusClient, DataType

client = MilvusClient(uri="http://localhost:19530")

# Create schema with a JSON field
schema = client.create_schema(auto_id=False, enable_dynamic_field=True)

schema.add_field(field_name="product_id", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=5)
schema.add_field(field_name="metadata", datatype=DataType.JSON, nullable=True)  # JSON field that allows null values

client.create_collection(
    collection_name="product_catalog",
    schema=schema
)
import io.milvus.v2.client.*;
import io.milvus.v2.service.collection.request.CreateCollectionReq;
import io.milvus.v2.service.collection.request.AddFieldReq;

ConnectConfig config = ConnectConfig.builder()
        .uri("http://localhost:19530")
        .build();
MilvusClientV2 client = new MilvusClientV2(config);

CreateCollectionReq.CollectionSchema schema = CreateCollectionReq.CollectionSchema.builder()
        .enableDynamicField(true)
        .build();
        
schema.addField(AddFieldReq.builder()
        .fieldName("product_id")
        .dataType(DataType.Int64)
        .isPrimaryKey(Boolean.TRUE)
        .build());
schema.addField(AddFieldReq.builder()
        .fieldName("vector")
        .dataType(DataType.FloatVector)
        .dimension(5)
        .build());
schema.addField(AddFieldReq.builder()
        .fieldName("metadata")
        .dataType(DataType.JSON)
        .isNullable(true)
        .build());
        
CreateCollectionReq requestCreate = CreateCollectionReq.builder()
        .collectionName("product_catalog")
        .collectionSchema(schema)
        .build();
client.createCollection(requestCreate);
import { MilvusClient, DataType } from '@zilliz/milvus2-sdk-node';

const client = new MilvusClient({
  address: 'localhost:19530'
});

// Create collection
await client.createCollection({
collection_name: "product_catalog",
fields: [
  {
    name: "product_id",
    data_type: DataType.Int64,
    is_primary_key: true,
    autoID: false
  },
  {
    name: "vector",
    data_type: DataType.FloatVector,
    dim: 5
  },
  {
    name: "metadata",
    data_type: DataType.JSON,
    nullable: true  // JSON field that allows null values
  }
],
enable_dynamic_field: true
});

import (
    "context"

    "github.com/milvus-io/milvus/client/v2/entity"
    "github.com/milvus-io/milvus/client/v2/milvusclient"
)

ctx, cancel := context.WithCancel(context.Background())
defer cancel()

client, err := milvusclient.New(ctx, &milvusclient.ClientConfig{
    Address: "localhost:19530",
})
if err != nil {
    return err
}

schema := entity.NewSchema().WithDynamicFieldEnabled(true)
schema.WithField(entity.NewField().
    WithName("product_id").pk
    WithDataType(entity.FieldTypeInt64).
    WithIsPrimaryKey(true),
).WithField(entity.NewField().
    WithName("vector").
    WithDataType(entity.FieldTypeFloatVector).
    WithDim(5),
).WithField(entity.NewField().
    WithName("metadata").
    WithDataType(entity.FieldTypeJSON).
    WithNullable(true),
)

err = client.CreateCollection(ctx, milvusclient.NewCreateCollectionOption("product_catalog", schema))
if err != nil {
    return err
}
# restful
export TOKEN="root:Milvus"
export CLUSTER_ENDPOINT="http://localhost:19530"

# 字段定义
export productIdField='{
  "fieldName": "product_id",
  "dataType": "Int64",
  "isPrimary": true,
  "autoID": false
}'

export vectorField='{
  "fieldName": "vector",
  "dataType": "FloatVector",
  "typeParams": {
    "dim": 5
  }
}'

export metadataField='{
  "fieldName": "metadata",
  "dataType": "JSON",
  "isNullable": true
}'

# 构造 schema
export schema="{
  \"autoID\": false,
  \"enableDynamicField\": true,
  \"fields\": [
    $productIdField,
    $vectorField,
    $metadataField
  ]
}"

# 创建集合
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
--data "{
  \"collectionName\": \"product_catalog\",
  \"schema\": $schema
}"

You can also enable the dynamic field feature to store undeclared fields flexibly, but it’s not required for JSON fields to function. For more information, refer to Dynamic Field.

Insert entities with JSON data

Once the collection is created, insert entities that contain structured JSON objects in the metadata JSON field.

entities = [
    {
        "product_id": 1,
        "vector": [0.1, 0.2, 0.3, 0.4, 0.5],
        "metadata": {
            "category": "electronics",
            "brand": "BrandA",
            "in_stock": True,
            "price": 99.99,
            "string_price": "99.99",
            "tags": ["clearance", "summer_sale"],
            "supplier": {
                "name": "SupplierX",
                "country": "USA",
                "contact": {
                    "email": "support@supplierx.com",
                    "phone": "+1-800-555-0199"
                }
            }
        }
    }
]

client.insert(collection_name="product_catalog", data=entities)
import com.google.gson.Gson;
import com.google.gson.JsonObject;

import io.milvus.v2.service.vector.request.InsertReq;

Gson gson = new Gson();
JsonObject row = new JsonObject();
row.addProperty("product_id", 1);
row.add("vector", gson.toJsonTree(Arrays.asList(0.1, 0.2, 0.3, 0.4, 0.5)));

JsonObject metadata = new JsonObject();
metadata.addProperty("category", "electronics");
metadata.addProperty("brand", "BrandA");
metadata.addProperty("in_stock", true);
metadata.addProperty("price", 99.99);
metadata.addProperty("string_price", "99.99");
metadata.add("tags", gson.toJsonTree(Arrays.asList("clearance", "summer_sale")));

JsonObject supplier = new JsonObject();
supplier.addProperty("name", "SupplierX");
supplier.addProperty("country", "USA");

JsonObject contact = new JsonObject();
contact.addProperty("email", "support@supplierx.com");
contact.addProperty("phone", "+1-800-555-0199");

supplier.add("contact", contact);
metadata.add("supplier", supplier);
row.add("metadata", metadata);

client.insert(InsertReq.builder()
        .collectionName("product_catalog")
        .data(Collections.singletonList(row))
        .build());
const entities = [
    {
        "product_id": 1,
        "vector": [0.1, 0.2, 0.3, 0.4, 0.5],
        "metadata": {
            "category": "electronics",
            "brand": "BrandA",
            "in_stock": True,
            "price": 99.99,
            "string_price": "99.99",
            "tags": ["clearance", "summer_sale"],
            "supplier": {
                "name": "SupplierX",
                "country": "USA",
                "contact": {
                    "email": "support@supplierx.com",
                    "phone": "+1-800-555-0199"
                }
            }
        }
    }
]

await client.insert({
    collection_name: "product_catalog", 
    data: entities
});
_, err = client.Insert(ctx, milvusclient.NewColumnBasedInsertOption("product_catalog").
    WithInt64Column("product_id", []int64{1}).
    WithFloatVectorColumn("vector", 5, [][]float32{
        {0.1, 0.2, 0.3, 0.4, 0.5},
    }).WithColumns(
    column.NewColumnJSONBytes("metadata", [][]byte{
        []byte(`{
            "category": "electronics",
            "brand": "BrandA",
            "in_stock": True,
            "price": 99.99,
            "string_price": "99.99",
            "tags": ["clearance", "summer_sale"],
            "supplier": {
                "name": "SupplierX",
                "country": "USA",
                "contact": {
                    "email": "support@supplierx.com",
                    "phone": "+1-800-555-0199"
                }
            }
        }`),
    }),
))
if err != nil {
    return err
}
# restful
export TOKEN="root:Milvus"
export CLUSTER_ENDPOINT="http://localhost:19530"

export entities='[
  {
    "product_id": 1,
    "vector": [0.1, 0.2, 0.3, 0.4, 0.5],
    "metadata": {
      "category": "electronics",
      "brand": "BrandA",
      "in_stock": true,
      "price": 99.99,
      "string_price": "99.99",
      "tags": ["clearance", "summer_sale"],
      "supplier": {
        "name": "SupplierX",
        "country": "USA",
        "contact": {
          "email": "support@supplierx.com",
          "phone": "+1-800-555-0199"
        }
      }
    }
  }
]'

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/product_catalog/insert" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
--data "{
  \"data\": $entities
}"

Index values inside the JSON field

To accelerate scalar filtering on JSON fields, Milvus supports the following types of indexes:

  • JSON path index – index specific JSON paths with a declared scalar type.

  • JSON flat index – index an entire JSON object (or subtree) with automatic type inference.

Indexing JSON fields is optional. You can still query or filter by JSON paths without an index, but it may result in slower performance due to brute-force search.

Choose between path index and flat indexCompatible with Milvus 2.6.x

Capability

JSON Path Index

JSON Flat Index

What it indexes

Specific path(s) you name

All flattened paths under an object path

Type handling

You declare json_cast_type (scalar types)

Must be JSON (auto type inference)

Arrays as LHS¹

Supported

Not supported

Query speed

High on indexed paths

High, slightly lower on average

Disk use

Lower

Higher

¹ Arrays as LHS means the left-hand side of the filter expression is a JSON array, for example:

metadata["tags"] == ["clearance", "summer_sale"]
json_contains(metadata["tags"], "clearance")

In these cases, metadata["tags"] is an array. JSON flat indexing does not accelerate such filters — use a JSON path index with an array cast type instead.

Use JSON path index when:

  • You know the hot keys to query in advance.

  • You need to filter where the left-hand side is an array.

  • You want to minimize disk usage.

Use JSON flat index when:

  • You want to index a whole subtree (including the root).

  • Your JSON structure changes frequently.

  • You want broader query coverage without declaring every path.

JSON path indexing

To create a JSON path index, specify:

  • JSON path (json_path): The path to the key or nested field within your JSON object that you want to index.

    • Example:

      • For a key, metadata["category"]

      • For a nested field, metadata["contact"]["email"]

      This defines where the indexing engine should look inside the JSON structure.

  • JSON cast type (json_cast_type): The data type that Milvus should use when interpreting and indexing the value at the specified path.

    • This type must match the actual data type of the field being indexed. If you want to convert the data type to another during indexing, consider using a cast function.

    • For a complete list, see below.

Supported JSON cast types

Cast types are case-insensitive. The following types are supported:

Cast Type

Description

Example JSON Value

bool

Boolean value

true, false

double

Numeric value (integer or float)

42, 99.99, -15.5

varchar

String value

"electronics", "BrandA"

array_bool

Array of booleans

[true, false, true]

array_double

Array of numbers

[1.2, 3.14, 42]

array_varchar

Array of strings

["tag1", "tag2", "tag3"]

Arrays should contain elements of the same type for optimal indexing. For more information, refer to Array Field.

Example: Create JSON path indexes

Using the metadata JSON structure from our introduction, here are examples of how to create indexes on different JSON paths:

# Index the category field as a string
index_params = client.prepare_index_params()

index_params.add_index(
    field_name="metadata",
    index_type="AUTOINDEX", # Must be set to AUTOINDEX or INVERTED for JSON path indexing
    index_name="category_index",  # Unique index name
    params={
        "json_path": "metadata[\"category\"]", # Path to the JSON key to be indexed
        "json_cast_type": "varchar" # Data cast type
    }
)

# Index the tags array as string array
index_params.add_index(
    field_name="metadata",
    index_type="AUTOINDEX", # Must be set to AUTOINDEX or INVERTED for JSON path indexing
    index_name="tags_array_index", # Unique index name
    params={
        "json_path": "metadata[\"tags\"]", # Path to the JSON key to be indexed
        "json_cast_type": "array_varchar" # Data cast type
    }
)
import io.milvus.v2.common.IndexParam;

Map<String,Object> extraParams1 = new HashMap<>();
extraParams1.put("json_path", "metadata[\"category\"]");
extraParams1.put("json_cast_type", "varchar");
indexParams.add(IndexParam.builder()
        .fieldName("metadata")
        .indexName("category_index")
        .indexType(IndexParam.IndexType.AUTOINDEX)
        .extraParams(extraParams1)
        .build());

Map<String,Object> extraParams2 = new HashMap<>();
extraParams2.put("json_path", "metadata[\"tags\"]");
extraParams2.put("json_cast_type", "array_varchar");
indexParams.add(IndexParam.builder()
        .fieldName("metadata")
        .indexName("tags_array_index")
        .indexType(IndexParam.IndexType.AUTOINDEX)
        .extraParams(extraParams2)
        .build());
const indexParams = [
  {
    collection_name: "product_catalog",
    field_name: "metadata",
    index_name: "category_index",
    index_type: "AUTOINDEX", // Can also use "INVERTED" for JSON path indexing
    extra_params: {
      json_path: 'metadata["category"]',
      json_cast_type: "varchar",
    },
  },
  {
    collection_name: "product_catalog",
    field_name: "metadata",
    index_name: "tags_array_index",
    index_type: "AUTOINDEX", // Can also use "INVERTED" for JSON path indexing
    extra_params: {
      json_path: 'metadata["tags"]',
      json_cast_type: "array_varchar",
    },
  },
];

import (
    "github.com/milvus-io/milvus/client/v2/index"
)

jsonIndex1 := index.NewJSONPathIndex(index.AUTOINDEX, "varchar", `metadata["category"]`)
    .WithIndexName("category_index")
jsonIndex2 := index.NewJSONPathIndex(index.AUTOINDEX, "array_varchar", `metadata["tags"]`)
    .WithIndexName("tags_array_index")

indexOpt1 := milvusclient.NewCreateIndexOption("product_catalog", "metadata", jsonIndex1)
indexOpt2 := milvusclient.NewCreateIndexOption("product_catalog", "metadata", jsonIndex2)
# restful
export categoryIndex='{
  "fieldName": "metadata",
  "indexName": "category_index",
  "params": {
    "index_type": "AUTOINDEX",
    "json_path": "metadata[\\\"category\\\"]",
    "json_cast_type": "varchar"
  }
}'

export tagsArrayIndex='{
  "fieldName": "metadata",
  "indexName": "tags_array_index",
  "params": {
    "index_type": "AUTOINDEX",
    "json_path": "metadata[\\\"tags\\\"]",
    "json_cast_type": "array_varchar"
  }
}'

Use JSON cast functions for type conversionCompatible with Milvus 2.5.14+

If your JSON field key contains values in an incorrect format (e.g., numbers stored as strings), you can use cast functions to convert values during indexing.

Supported cast functions

Cast functions are case-insensitive. The following types are supported:

Cast Function

Converts From → To

Use Case

"STRING_TO_DOUBLE"

String → Numeric (double)

Convert "99.99" to 99.99

Example: Cast string numbers to double
# Convert string numbers to double for indexing
index_params.add_index(
    field_name="metadata",
    index_type="AUTOINDEX", # Must be set to AUTOINDEX or INVERTED for JSON path indexing
    index_name="string_to_double_index", # Unique index name
    params={
        "json_path": "metadata[\"string_price\"]", # Path to the JSON key to be indexed
        "json_cast_type": "double", # Data cast type
        "json_cast_function": "STRING_TO_DOUBLE" # Cast function; case insensitive
    }
)
Map<String,Object> extraParams3 = new HashMap<>();
extraParams3.put("json_path", "metadata[\"string_price\"]");
extraParams3.put("json_cast_type", "double");
extraParams3.put("json_cast_function", "STRING_TO_DOUBLE");
indexParams.add(IndexParam.builder()
        .fieldName("metadata")
        .indexName("string_to_double_index")
        .indexType(IndexParam.IndexType.AUTOINDEX)
        .extraParams(extraParams3)
        .build());
indexParams.push({
  collection_name: "product_catalog",
  field_name: "metadata",
  index_name: "string_to_double_index",
  index_type: "AUTOINDEX", // Can also use "INVERTED"
  extra_params: {
    json_path: 'metadata["string_price"]',
    json_cast_type: "double",
    json_cast_function: "STRING_TO_DOUBLE", // Case insensitive
  },
});

jsonIndex3 := index.NewJSONPathIndex(index.AUTOINDEX, "double", `metadata["string_price"]`)
                    .WithIndexName("string_to_double_index")

indexOpt3 := milvusclient.NewCreateIndexOption("product_catalog", "metadata", jsonIndex3)

# restful
export stringToDoubleIndex='{
  "fieldName": "metadata",
  "indexName": "string_to_double_index",
  "params": {
    "index_type": "AUTOINDEX",
    "json_path": "metadata[\\\"string_price\\\"]",
    "json_cast_type": "double",
    "json_cast_function": "STRING_TO_DOUBLE"
  }
}'
  • The json_cast_type parameter is mandatory and must be the same as the cast function’s output type.

  • If conversion fails (e.g., non-numeric string), the value is skipped and not indexed.

JSON flat indexingCompatible with Milvus 2.6.x

For JSON flat indexing, Milvus indexes all key–value pairs within a JSON object path (including nested objects) by flattening the JSON structure and automatically inferring the type of each value.

How flattening and type inference work

When you create a JSON flat index on an object path, Milvus will:

  1. Flatten – Recursively traverse the object starting from the specified json_path and extract nested key–value pairs as fully qualified paths. Using the earlier metadata example:

    "metadata": {
      "category": "electronics",
      "price": 99.99,
      "supplier": { "country": "USA" }
    }
    

    becomes:

    metadata["category"] = "electronics"
    metadata["price"] = 99.99
    metadata["supplier"]["country"] = "USA"
    
  2. Infer types automatically – For each value, Milvus determines its type in the following order:

    unsigned integer → signed integer → floating-point → string
    

    The first type that fits the value is used for indexing.

    This means the inferred type will always be one of these four.

    Type inference is performed per document, so the same path can have different inferred types across documents.

    After type inference, the flattened data is internally represented as terms with their inferred types, for example:

    ("category", Text, "electronics")
    ("price", Double, 99.99)
    ("supplier.country", Text, "USA")
    

Example: Create JSON flat index

# 1. Create a flat index on the root object of the JSON column (covers the entire JSON subtree)
index_params.add_index(
    field_name="metadata",
    index_type="AUTOINDEX",          # Or "INVERTED", same as Path Index
    index_name="metadata_flat",      # Unique index name
    params={
        "json_path": 'metadata',     # Object path: the root object of the column
        "json_cast_type": "JSON"     # Key difference: must be "JSON" for Flat Index; case-insensitive
    }
)

# 2. Optionally, create a flat index on a sub-object (e.g., supplier subtree)
index_params.add_index(
    field_name="metadata",
    index_type="AUTOINDEX",
    index_name="metadata_supplier_flat",
    params={
        "json_path": 'metadata["supplier"]',  # Object path: sub-object path
        "json_cast_type": "JSON"
    }
)
// java
// nodejs
// go
# restful

Apply indexes to the collection

After defining the index parameters, you can apply them to the collection using create_index():

client.create_index(
    collection_name="product_catalog",
    index_params=index_params
)
import io.milvus.v2.service.index.request.CreateIndexReq;

client.createIndex(CreateIndexReq.builder()
        .collectionName("product_catalog")
        .indexParams(indexParams)
        .build());
await client.createIndex(indexParams)
indexTask1, err := client.CreateIndex(ctx, indexOpt1)
if err != nil {
    return err
}
indexTask2, err := client.CreateIndex(ctx, indexOpt2)
if err != nil {
    return err
}
indexTask3, err := client.CreateIndex(ctx, indexOpt3)
if err != nil {
    return err
}
# restful
export indexParams="[
  $categoryIndex,
  $tagsArrayIndex,
  $stringToDoubleIndex
]"
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/indexes/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
--data "{
  \"collectionName\": \"product_catalog\",
  \"indexParams\": $indexParams
}"

Filter by JSON field values

After inserting and indexing JSON fields, you can filter on them using standard filter expressions with JSON path syntax.

For example:

filter = 'metadata["category"] == "electronics"'
filter = 'metadata["price"] > 50'
filter = 'json_contains(metadata["tags"], "featured")'
String filter = 'metadata["category"] == "electronics"';
String filter = 'metadata["price"] > 50';
String filter = 'json_contains(metadata["tags"], "featured")';
let filter = 'metadata["category"] == "electronics"'
let filter = 'metadata["price"] > 50'
let filter = 'json_contains(metadata["tags"], "featured")'
filter := 'metadata["category"] == "electronics"'
filter := 'metadata["price"] > 50'
filter := 'json_contains(metadata["tags"], "featured")'
# restful
export filterCategory='metadata["category"] == "electronics"'
export filterPrice='metadata["price"] > 50'
export filterTags='json_contains(metadata["tags"], "featured")'

To use these expressions in a search or query, make sure:

  • You have created an index on each vector field.

  • The collection is loaded into memory.

For a full list of supported operators and expressions, refer to JSON Operators.

Pull it all together

By now, you’ve learned how to define, insert, and optionally index structured values inside a JSON field.

To complete the workflow in a real-world application, you’ll also need to:

FAQ

What are the differences between a JSON field and the dynamic field?

  • JSON field is schema-defined. You must explicitly declare the field in the schema.

  • Dynamic field is a hidden JSON object ($meta) that automatically stores any field not defined in the schema.

Both support nested structures and JSON path indexing, but dynamic fields are more suitable for optional or evolving data structures.

Refer to Dynamic Field for details.

Are there any limitations on the size of a JSON field?

Yes. Each JSON field is limited to 65,536 bytes.

Does a JSON field support setting a default value?

No, JSON fields do not support default values. However, you can set nullable=True when defining the field to allow empty entries.

Refer to Nullable & Default for details.

Are there any naming conventions for JSON field keys?

Yes, to ensure compatibility with queries and indexing:

  • Use only letters, numbers, and underscores in JSON keys.

  • Avoid using special characters, spaces, or dots (., /, etc.).

  • Incompatible keys may cause parsing issues in filter expressions.

How does Milvus handle string values in JSON fields?

Milvus stores string values exactly as they appear in the JSON input—without semantic transformation. Improperly quoted strings may result in errors during parsing.

Examples of valid strings:

"a\"b", "a'b", "a\\b"

Examples of invalid strings:

'a"b', 'a\'b'

What filtering logic does Milvus use for indexed JSON paths?

  • Numeric Indexing:

    If an index is created with json_cast_type="double", only numeric filter conditions (e.g., >, <, == 42) will leverage the index. Non-numeric conditions may fall back to a brute-force scan.

  • String Indexing:

    If an index uses json_cast_type="varchar", only string filter conditions will benefit from the index; other types may fall back to a brute-force scan.

  • Boolean Indexing:

    Boolean indexing behaves similarly to string indexing, with index usage only when the condition strictly matches true or false.

What about numeric precision when indexing JSON fields?

Milvus stores all indexed numeric values as doubles.

If a numeric value exceeds 2^53, it may lose precision. This loss of precision can result in filter queries not matching out-of-range values exactly.

Can I create multiple indexes on the same JSON path with different cast types?

No, each JSON path supports only one index. You must choose a single json_cast_type that matches your data. Creating multiple indexes on the same path with different cast types is not supported.

What if values on a JSON path have inconsistent types?

Inconsistent types across entities can lead to partial indexing. For example, if metadata["price"] is stored as both a number (99.99) and a string ("99.99"), and the index is defined with json_cast_type="double", only the numeric values will be indexed. The string-form entries will be skipped and not appear in filter results.

Can I use filters with a different type than the indexed cast type?

If your filter expression uses a different type than the index’s json_cast_type, the system will not use the index, and may fall back to a slower brute-force scan—if the data allows. For best performance, always align your filter expression with the cast type of the index.