Campo JSON
JSON (JavaScript Object Notation) è un formato leggero per lo scambio di dati che offre un modo flessibile per memorizzare e interrogare strutture di dati complesse. In Milvus è possibile memorizzare informazioni strutturate aggiuntive accanto ai dati vettoriali utilizzando i campi JSON, consentendo ricerche e interrogazioni avanzate che combinano la somiglianza vettoriale con il filtraggio strutturato.
I campi JSON sono ideali per le applicazioni che richiedono metadati per ottimizzare i risultati di ricerca. Ad esempio, nel commercio elettronico, i vettori dei prodotti possono essere arricchiti con attributi quali categoria, prezzo e marca. Nei sistemi di raccomandazione, i vettori utente possono essere combinati con preferenze e informazioni demografiche. Di seguito è riportato un esempio di un tipico campo JSON.
{
"category": "electronics",
"price": 99.99,
"brand": "BrandA"
}
Aggiungi campo JSON
Per utilizzare i campi JSON in Milvus, si deve definire il tipo di campo pertinente nello schema della collezione, impostando datatype
sul tipo JSON supportato, cioè JSON
.
Ecco come definire uno schema di raccolta che includa un campo JSON.
from pymilvus import MilvusClient, DataType
client = MilvusClient(uri="http://localhost:19530")
schema = client.create_schema(
auto_id=False,
enable_dynamic_fields=True,
)
schema.add_field(field_name="metadata", datatype=DataType.JSON)
schema.add_field(field_name="pk", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="embedding", datatype=DataType.FLOAT_VECTOR, dim=3)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.common.DataType;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;
MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
.uri("http://localhost:19530")
.build());
CreateCollectionReq.CollectionSchema schema = client.createSchema();
schema.setEnableDynamicField(true);
schema.addField(AddFieldReq.builder()
.fieldName("metadata")
.dataType(DataType.JSON)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("pk")
.dataType(DataType.Int64)
.isPrimaryKey(true)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("embedding")
.dataType(DataType.FloatVector)
.dimension(3)
.build());
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const schema = [
{
name: "metadata",
data_type: DataType.JSON,
},
{
name: "pk",
data_type: DataType.Int64,
is_primary_key: true,
},
{
name: "embedding",
data_type: DataType.FloatVector,
dim: 3,
},
];
export jsonField='{
"fieldName": "metadata",
"dataType": "JSON"
}'
export pkField='{
"fieldName": "pk",
"dataType": "Int64",
"isPrimary": true
}'
export vectorField='{
"fieldName": "embedding",
"dataType": "FloatVector",
"elementTypeParams": {
"dim": 3
}
}'
export schema="{
\"autoID\": false,
\"fields\": [
$jsonField,
$pkField,
$vectorField
]
}"
In questo esempio, aggiungiamo un campo JSON chiamato metadata
per memorizzare metadati aggiuntivi relativi ai dati vettoriali, come la categoria del prodotto, il prezzo e le informazioni sulla marca.
Il campo primario e il campo vettoriale sono obbligatori quando si crea una collezione. Il campo primario identifica in modo univoco ogni entità, mentre il campo vettoriale è fondamentale per la ricerca delle somiglianze. Per maggiori dettagli, consultare Campo primario e AutoID, Vettore denso, Vettore binario o Vettore sparso.
Creare una raccolta
Quando si crea una raccolta, è necessario creare un indice per il campo vettoriale per garantire le prestazioni di recupero. In questo esempio, si utilizza AUTOINDEX
per semplificare l'impostazione dell'indice. Per maggiori dettagli, consultare AUTOINDEX.
index_params = client.prepare_index_params()
index_params.add_index(
field_name="embedding",
index_type="AUTOINDEX",
metric_type="COSINE"
)
import io.milvus.v2.common.IndexParam;
import java.util.*;
List<IndexParam> indexes = new ArrayList<>();
indexes.add(IndexParam.builder()
.fieldName("embedding")
.indexType(IndexParam.IndexType.AUTOINDEX)
.metricType(IndexParam.MetricType.COSINE)
.build());
const indexParams = {
index_name: 'embedding_index',
field_name: 'embedding',
metricType: MetricType.CONSINE,
index_type: IndexType.AUTOINDEX,
);
export indexParams='[
{
"fieldName": "embedding",
"metricType": "COSINE",
"indexType": "AUTOINDEX"
}
]'
Utilizzare i parametri dello schema e dell'indice definiti per creare una collezione.
client.create_collection(
collection_name="my_json_collection",
schema=schema,
index_params=index_params
)
CreateCollectionReq requestCreate = CreateCollectionReq.builder()
.collectionName("my_json_collection")
.collectionSchema(schema)
.indexParams(indexes)
.build();
client.createCollection(requestCreate);
client.create_collection({
collection_name: "my_json_collection",
schema: schema,
index_params: indexParams
})
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
\"collectionName\": \"my_json_collection\",
\"schema\": $schema,
\"indexParams\": $indexParams
}"
Inserire i dati
Dopo aver creato la collezione, è possibile inserire dati che includono campi JSON.
# Data to be inserted
data = [
{
"metadata": {"category": "electronics", "price": 99.99, "brand": "BrandA"},
"pk": 1,
"embedding": [0.12, 0.34, 0.56]
},
{
"metadata": {"category": "home_appliances", "price": 249.99, "brand": "BrandB"},
"pk": 2,
"embedding": [0.56, 0.78, 0.90]
},
{
"metadata": {"category": "furniture", "price": 399.99, "brand": "BrandC"},
"pk": 3,
"embedding": [0.91, 0.18, 0.23]
}
]
# Insert data into the collection
client.insert(
collection_name="your_collection_name",
data=data
)
import com.google.gson.Gson;
import com.google.gson.JsonObject;
import io.milvus.v2.service.vector.request.InsertReq;
import io.milvus.v2.service.vector.response.InsertResp;
List<JsonObject> rows = new ArrayList<>();
Gson gson = new Gson();
rows.add(gson.fromJson("{\"metadata\": {\"category\": \"electronics\", \"price\": 99.99, \"brand\": \"BrandA\"}, \"pk\": 1, \"embedding\": [0.1, 0.2, 0.3]}", JsonObject.class));
rows.add(gson.fromJson("{\"metadata\": {\"category\": \"home_appliances\", \"price\": 249.99, \"brand\": \"BrandB\"}, \"pk\": 2, \"embedding\": [0.4, 0.5, 0.6]}", JsonObject.class));
rows.add(gson.fromJson("{\"metadata\": {\"category\": \"furniture\", \"price\": 399.99, \"brand\": \"BrandC\"}, \"pk\": 3, \"embedding\": [0.7, 0.8, 0.9]}", JsonObject.class));
InsertResp insertR = client.insert(InsertReq.builder()
.collectionName("my_json_collection")
.data(rows)
.build());
const data = [
{
"metadata": {"category": "electronics", "price": 99.99, "brand": "BrandA"},
"pk": 1,
"embedding": [0.12, 0.34, 0.56]
},
{
"metadata": {"category": "home_appliances", "price": 249.99, "brand": "BrandB"},
"pk": 2,
"embedding": [0.56, 0.78, 0.90]
},
{
"metadata": {"category": "furniture", "price": 399.99, "brand": "BrandC"},
"pk": 3,
"embedding": [0.91, 0.18, 0.23]
}
]
client.insert({
collection_name: "my_json_collection",
data: data
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/insert" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"data": [
{
"metadata": {"category": "electronics", "price": 99.99, "brand": "BrandA"},
"pk": 1,
"embedding": [0.12, 0.34, 0.56]
},
{
"metadata": {"category": "home_appliances", "price": 249.99, "brand": "BrandB"},
"pk": 2,
"embedding": [0.56, 0.78, 0.90]
},
{
"metadata": {"category": "furniture", "price": 399.99, "brand": "BrandC"},
"pk": 3,
"embedding": [0.91, 0.18, 0.23]
}
],
"collectionName": "my_json_collection"
}'
In questo esempio.
Ogni inserimento di dati include un campo primario (
pk
),metadata
come campo JSON per memorizzare informazioni come la categoria del prodotto, il prezzo e la marca.embedding
è un campo vettoriale tridimensionale utilizzato per la ricerca della similarità vettoriale.
Ricerca e interrogazione
I campi JSON consentono di filtrare gli scalari durante le ricerche, migliorando le capacità di ricerca vettoriale di Milvus. È possibile eseguire interrogazioni basate sulle proprietà JSON oltre che sulla somiglianza vettoriale.
Filtro delle query
È possibile filtrare i dati in base alle proprietà JSON, come ad esempio la corrispondenza con valori specifici o la verifica se un numero rientra in un determinato intervallo.
filter = 'metadata["category"] == "electronics" and metadata["price"] < 150'
res = client.query(
collection_name="my_json_collection",
filter=filter,
output_fields=["metadata"]
)
print(res)
# Output
# data: ["{'metadata': {'category': 'electronics', 'price': 99.99, 'brand': 'BrandA'}, 'pk': 1}"]
import io.milvus.v2.service.vector.request.QueryReq;
import io.milvus.v2.service.vector.response.QueryResp;
String filter = "metadata[\"category\"] == \"electronics\" and metadata[\"price\"] < 150";
QueryResp resp = client.query(QueryReq.builder()
.collectionName("my_json_collection")
.filter(filter)
.outputFields(Collections.singletonList("metadata"))
.build());
System.out.println(resp.getQueryResults());
// Output
//
// [QueryResp.QueryResult(entity={metadata={"category":"electronics","price":99.99,"brand":"BrandA"}, pk=1})]
client.query({
collection_name: 'my_scalar_collection',
filter: 'metadata["category"] == "electronics" and metadata["price"] < 150',
output_fields: ['metadata']
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "my_json_collection",
"filter": "metadata[\"category\"] == \"electronics\" and metadata[\"price\"] < 150",
"outputFields": ["metadata"]
}'
{"code":0,"cost":0,"data":[{"metadata":"{\"category\": \"electronics\", \"price\": 99.99, \"brand\": \"BrandA\"}","pk":1}]}
Nella query qui sopra, Milvus filtra le entità in cui il campo metadata
ha una categoria di "electronics"
e un prezzo inferiore a 150, restituendo le entità che corrispondono a questi criteri.
Ricerca vettoriale con filtraggio JSON
Combinando la similarità vettoriale con il filtraggio JSON, è possibile garantire che i dati recuperati non solo corrispondano dal punto di vista semantico, ma soddisfino anche specifiche condizioni aziendali, rendendo i risultati della ricerca più precisi e allineati alle esigenze degli utenti.
filter = 'metadata["brand"] == "BrandA"'
res = client.search(
collection_name="my_json_collection",
data=[[0.3, -0.6, 0.1]],
limit=5,
search_params={"params": {"nprobe": 10}},
output_fields=["metadata"],
filter=filter
)
print(res)
# Output
# data: ["[{'id': 1, 'distance': -0.2479381263256073, 'entity': {'metadata': {'category': 'electronics', 'price': 99.99, 'brand': 'BrandA'}}}]"]
import io.milvus.v2.service.vector.request.SearchReq;
import io.milvus.v2.service.vector.response.SearchResp;
String filter = "metadata[\"brand\"] == \"BrandA\"";
SearchResp resp = client.search(SearchReq.builder()
.collectionName("my_json_collection")
.annsField("embedding")
.data(Collections.singletonList(new FloatVec(new float[]{0.3f, -0.6f, 0.1f})))
.topK(5)
.outputFields(Collections.singletonList("metadata"))
.filter(filter)
.build());
System.out.println(resp.getSearchResults());
// Output
//
// [[SearchResp.SearchResult(entity={metadata={"category":"electronics","price":99.99,"brand":"BrandA"}}, score=-0.2364331, id=1)]]
client.search({
collection_name: 'my_json_collection',
data: [0.3, -0.6, 0.1],
limit: 5,
output_fields: ['metadata'],
filter: 'metadata["category"] == "electronics" and metadata["price"] < 150',
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "my_json_collection",
"data": [
[0.3, -0.6, 0.1]
],
"annsField": "embedding",
"limit": 5,
"searchParams":{
"params":{"nprobe":10}
},
"outputFields": ["metadata"],
"filter": "metadata[\"brand\"] == \"BrandA\""
}'
## {"code":0,"cost":0,"data":[{"distance":-0.24793813,"id":1,"metadata":"{\"category\": \"electronics\", \"price\": 99.99, \"brand\": \"BrandA\"}"}]}
In questo esempio, Milvus restituisce le prime 5 entità più simili al vettore della query, con il campo metadata
contenente una marca di "BrandA"
.
Inoltre, Milvus supporta operatori avanzati di filtraggio JSON come JSON_CONTAINS
, JSON_CONTAINS_ALL
, e JSON_CONTAINS_ANY
, che possono migliorare ulteriormente le capacità di interrogazione. Per maggiori dettagli, consultare Filtraggio dei metadati.
Limiti
Limiti dell'indicizzazione: A causa della complessità delle strutture di dati, l'indicizzazione dei campi JSON non è supportata.
Corrispondenza dei tipi di dati: se il valore chiave di un campo JSON è un intero o una virgola mobile, può essere confrontato solo con un'altra chiave intera o float o con i campi
INT32/64
oFLOAT32/64
. Se il valore della chiave è una stringa (VARCHAR
), può essere confrontato solo con un'altra chiave stringa.Restrizioni sui nomi: Quando si nominano le chiavi JSON, si raccomanda di usare solo lettere, caratteri numerici e trattini bassi, poiché altri caratteri possono causare problemi durante il filtraggio o la ricerca.
Gestione dei valori stringa: Per i valori stringa (
VARCHAR
), Milvus memorizza le stringhe dei campi JSON così come sono, senza conversione semantica. Ad esempio:'a"b'
,"a'b"
,'a\\'b'
, e"a\\"b"
sono memorizzati come inseriti; tuttavia,'a'b'
e"a"b"
sono considerati non validi.Gestione dei dizionari annidati: I dizionari annidati all'interno dei valori dei campi JSON sono trattati come stringhe.