milvus-logo
LFAI
Casa
  • Guida per l'utente

Utilizzare i campi JSON

Questa guida spiega come utilizzare i campi JSON, ad esempio per inserire valori JSON e per effettuare ricerche e interrogazioni nei campi JSON con operatori di base e avanzati.

Panoramica

JSON è l'acronimo di Javascript Object Notation, un formato di dati basato su testo semplice e leggero. I dati in JSON sono strutturati in coppie chiave-valore, dove ogni chiave è una stringa che corrisponde a un valore di numero, stringa, booleano, elenco o array. Con i cluster Milvus, è possibile memorizzare i dizionari come valore di campo nelle collezioni.

Ad esempio, il codice seguente genera casualmente coppie chiave-valore, ciascuna contenente un campo JSON con la chiave colore.

# 3. Insert randomly generated vectors 
colors = ["green", "blue", "yellow", "red", "black", "white", "purple", "pink", "orange", "brown", "grey"]
data = []

for i in range(1000):
    current_color = random.choice(colors)
    current_tag = random.randint(1000, 9999)
    current_coord = [ random.randint(0, 40) for _ in range(3) ]
    current_ref = [ [ random.choice(colors) for _ in range(3) ] for _ in range(3) ]
    data.append({
        "id": i,
        "vector": [ random.uniform(-1, 1) for _ in range(5) ],
        "color": {
            "label": current_color,
            "tag": current_tag,
            "coord": current_coord,
            "ref": current_ref
        }
    })

print(data[0])
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.Random;

import com.alibaba.fastjson.JSONObject;

// 3. Insert randomly generated vectors and JSON data into the collection
List<String> colors = Arrays.asList("green", "blue", "yellow", "red", "black", "white", "purple", "pink", "orange", "brown", "grey");
List<JSONObject> data = new ArrayList<>();

for (int i=0; i<1000; i++) {
    Random rand = new Random();
    String current_color = colors.get(rand.nextInt(colors.size()-1));
    Integer current_tag = rand.nextInt(8999) + 1000;
    List<Integer> current_coord = Arrays.asList(rand.nextInt(40), rand.nextInt(40), rand.nextInt(40));
    List<List<String>> current_ref = Arrays.asList(
        Arrays.asList(colors.get(rand.nextInt(colors.size()-1)), colors.get(rand.nextInt(colors.size()-1)), colors.get(rand.nextInt(colors.size()-1))),
        Arrays.asList(colors.get(rand.nextInt(colors.size()-1)), colors.get(rand.nextInt(colors.size()-1)), colors.get(rand.nextInt(colors.size()-1))),
        Arrays.asList(colors.get(rand.nextInt(colors.size()-1)), colors.get(rand.nextInt(colors.size()-1)), colors.get(rand.nextInt(colors.size()-1)))
    );
    JSONObject row = new JSONObject();
    row.put("id", Long.valueOf(i));
    row.put("vector", Arrays.asList(rand.nextFloat(), rand.nextFloat(), rand.nextFloat(), rand.nextFloat(), rand.nextFloat()));
    JSONObject color = new JSONObject();
    color.put("label", current_color);
    color.put("tag", current_tag);
    color.put("coord", current_coord);
    color.put("ref", current_ref);
    row.put("color", color);
    data.add(row);
}

System.out.println(JSONObject.toJSON(data.get(0)));   
// 3. Insert randomly generated vectors 
const colors = ["green", "blue", "yellow", "red", "black", "white", "purple", "pink", "orange", "brown", "grey"]
var data = []

for (let i = 0; i < 1000; i++) {
    const current_color = colors[Math.floor(Math.random() * colors.length)]
    const current_tag = Math.floor(Math.random() * 8999 + 1000)
    const current_coord = Array(3).fill(0).map(() => Math.floor(Math.random() * 40))
    const current_ref = [ Array(3).fill(0).map(() => colors[Math.floor(Math.random() * colors.length)]) ]

    data.push({
        id: i,
        vector: [Math.random(), Math.random(), Math.random(), Math.random(), Math.random()],
        color: {
            label: current_color,
            tag: current_tag,
            coord: current_coord,
            ref: current_ref
        }
    })
}

console.log(data[0])

È possibile visualizzare la struttura dei dati generati controllando la prima voce.

{
    "id": 0,
    "vector": [
        -0.8017921296923975,
        0.550046715206634,
        0.764922589768134,
        0.6371433836123146,
        0.2705233937454232
    ],
    "color": {
        "label": "blue",
        "tag": 9927,
        "coord": [
            22,
            36,
            6
        ],
        "ref": [
            [
                "blue",
                "green",
                "white"
            ],
            [
                "black",
                "green",
                "pink"
            ],
            [
                "grey",
                "black",
                "brown"
            ]
        ]
    }
}

note

  • Assicurarsi che tutti i valori di un elenco o di un array siano dello stesso tipo di dati.

  • Eventuali dizionari annidati in un valore di campo JSON saranno considerati stringhe.

  • Utilizzare solo caratteri alfanumerici e trattini bassi per denominare le chiavi JSON, poiché altri caratteri possono causare problemi di filtraggio o ricerca.

  • Attualmente non è disponibile l'indicizzazione dei campi JSON, il che può rendere il filtraggio lungo. Tuttavia, questa limitazione sarà affrontata nelle prossime versioni.

Definire un campo JSON

Per definire un campo JSON, è sufficiente seguire la stessa procedura di definizione dei campi di altro tipo.

Per ulteriori informazioni sui parametri, consultare MilvusClient, create_schema(), add_field(), add_index(), create_collection(), e get_load_state() nel riferimento dell'SDK.

Per ulteriori informazioni sui parametri, fare riferimento a MilvusClientV2, createSchema(), addField(), IndexParam, createCollection(), e getLoadState() nel riferimento dell'SDK.

Per ulteriori informazioni sui parametri, fare riferimento a MilvusClient e createCollection() e createCollection() nel riferimento dell'SDK.

import random, time
from pymilvus import connections, MilvusClient, DataType

CLUSTER_ENDPOINT = "http://localhost:19530"

# 1. Set up a Milvus client
client = MilvusClient(
    uri=CLUSTER_ENDPOINT
)

# 2. Create a collection
schema = MilvusClient.create_schema(
    auto_id=False,
    enable_dynamic_field=False,
)

schema.add_field(field_name="id", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=5)
schema.add_field(field_name="color", datatype=DataType.JSON)

index_params = MilvusClient.prepare_index_params()

index_params.add_index(
    field_name="id",
    index_type="STL_SORT"
)

index_params.add_index(
    field_name="vector",
    index_type="IVF_FLAT",
    metric_type="L2",
    params={"nlist": 1024}
)

client.create_collection(
    collection_name="test_collection",
    schema=schema,
    index_params=index_params
)

res = client.get_load_state(
    collection_name="test_collection"
)

print(res)

# Output
#
# {
#     "state": "<LoadState: Loaded>"
# }
String CLUSTER_ENDPOINT = "http://localhost:19530";

// 1. Connect to Milvus server
ConnectConfig connectConfig = ConnectConfig.builder()
    .uri(CLUSTER_ENDPOINT)
    .build();

MilvusClientV2 client = new MilvusClientV2(connectConfig);

// 2. Create a collection in customized setup mode

// 2.1 Create schema
CreateCollectionReq.CollectionSchema schema = client.createSchema();

// 2.2 Add fields to schema
schema.addField(AddFieldReq.builder()
    .fieldName("id")
    .dataType(DataType.Int64)
    .isPrimaryKey(true)
    .autoID(false)
    .build());

schema.addField(AddFieldReq.builder()
    .fieldName("vector")
    .dataType(DataType.FloatVector)
    .dimension(5)
    .build());

schema.addField(AddFieldReq.builder()
    .fieldName("color")
    .dataType(DataType.JSON)
    .build());

// 2.3 Prepare index parameters
IndexParam indexParamForIdField = IndexParam.builder()
    .fieldName("id")
    .indexType(IndexParam.IndexType.STL_SORT)
    .build();

IndexParam indexParamForVectorField = IndexParam.builder()
    .fieldName("vector")
    .indexType(IndexParam.IndexType.IVF_FLAT)
    .metricType(IndexParam.MetricType.IP)
    .extraParams(Map.of("nlist", 1024))
    .build();

List<IndexParam> indexParams = new ArrayList<>();
indexParams.add(indexParamForIdField);
indexParams.add(indexParamForVectorField);

// 2.4 Create a collection with schema and index parameters
CreateCollectionReq customizedSetupReq = CreateCollectionReq.builder()
    .collectionName("test_collection")
    .collectionSchema(schema)
    .indexParams(indexParams)         
    .build();

client.createCollection(customizedSetupReq);

// 2.5 Check if the collection is loaded
GetLoadStateReq getLoadStateReq = GetLoadStateReq.builder()
    .collectionName("test_collection")
    .build();

Boolean isLoaded = client.getLoadState(getLoadStateReq);

System.out.println(isLoaded);

// Output:
// true
const { MilvusClient, DataType, sleep } = require("@zilliz/milvus2-sdk-node")

const address = "http://localhost:19530"

async function main() {
// 1. Set up a Milvus Client
client = new MilvusClient({address}); 

// 2. Create a collection
// 2.1 Define fields
const fields = [
    {
        name: "id",
        data_type: DataType.Int64,
        is_primary_key: true,
        auto_id: false
    },
    {
        name: "vector",
        data_type: DataType.FloatVector,
        dim: 5
    },
    {
        name: "color",
        data_type: DataType.JSON,
    }
]

// 2.2 Prepare index parameters
const index_params = [{
    field_name: "vector",
    index_type: "IVF_FLAT",
    metric_type: "IP",
    params: { nlist: 1024}
}]

// 2.3 Create a collection with fields and index parameters
res = await client.createCollection({
    collection_name: "test_collection",
    fields: fields, 
    index_params: index_params
})

console.log(res.error_code)

// Output
// 
// Success
// 

res = await client.getLoadState({
    collection_name: "test_collection",
})  

console.log(res.state)

// Output
// 
// LoadStateLoaded
// 

Per ulteriori informazioni sui parametri, consultare MilvusClient, create_schema(), add_field(), add_index(), create_collection(), e get_load_state() nel riferimento dell'SDK.

Per ulteriori informazioni sui parametri, fare riferimento a MilvusClientV2, createSchema(), addField(), IndexParam, createCollection(), e getLoadState() nel riferimento dell'SDK.

Per ulteriori informazioni sui parametri, fare riferimento a MilvusClient, createCollection(), e getLoadState() nel riferimento dell'SDK.

Inserire i valori dei campi

Dopo aver creato una collezione dall'oggetto CollectionSchema, è possibile inserire in essa dizionari come quello sopra descritto.

Utilizzare il metodo insert() per inserire i dati nell'insieme.

Utilizzare il metodo insert() per inserire i dati nell'insieme.

Utilizzare il metodo insert() per inserire i dati nell'insieme.

res = client.insert(
    collection_name="test_collection",
    data=data
)

print(res)

# Output
#
# {
#     "insert_count": 1000,
#     "ids": [
#         0,
#         1,
#         2,
#         3,
#         4,
#         5,
#         6,
#         7,
#         8,
#         9,
#         "(990 more items hidden)"
#     ]
# }
// 3.1 Insert data into the collection
InsertReq insertReq = InsertReq.builder()
    .collectionName("test_collection")
    .data(data)
    .build();

InsertResp insertResp = client.insert(insertReq);

System.out.println(JSONObject.toJSON(insertResp));

// Output:
// {"insertCnt": 1000}
// 3. Insert randomly generated vectors 
const colors = ["green", "blue", "yellow", "red", "black", "white", "purple", "pink", "orange", "brown", "grey"]
var data = []

for (let i = 0; i < 1000; i++) {
    const current_color = colors[Math.floor(Math.random() * colors.length)]
    const current_tag = Math.floor(Math.random() * 8999 + 1000)
    const current_coord = Array(3).fill(0).map(() => Math.floor(Math.random() * 40))
    const current_ref = [ Array(3).fill(0).map(() => colors[Math.floor(Math.random() * colors.length)]) ]

    data.push({
        id: i,
        vector: [Math.random(), Math.random(), Math.random(), Math.random(), Math.random()],
        color: {
            label: current_color,
            tag: current_tag,
            coord: current_coord,
            ref: current_ref
        }
    })
}

console.log(data[0])

// Output
// 
// {
//   id: 0,
//   vector: [
//     0.11455530974226114,
//     0.21704086958595314,
//     0.9430119822312437,
//     0.7802712923612023,
//     0.9106927960926137
//   ],
//   color: { label: 'grey', tag: 7393, coord: [ 22, 1, 22 ], ref: [ [Array] ] }
// }
// 

res = await client.insert({
    collection_name: "test_collection",
    data: data,
})

console.log(res.insert_cnt)

// Output
// 
// 1000
// 

Filtraggio scalare di base

Una volta aggiunti tutti i dati, è possibile effettuare ricerche e query utilizzando le chiavi del campo JSON, come si farebbe con un campo scalare standard.

Per ulteriori informazioni sui parametri, consultare la sezione search() nel riferimento dell'SDK.

Per ulteriori informazioni sui parametri, fare riferimento a search() nel riferimento all'SDK.

Per ulteriori informazioni sui parametri, fare riferimento a search() nel riferimento all'SDK.

# 4. Basic search with a JSON field
query_vectors = [ [ random.uniform(-1, 1) for _ in range(5) ]]

res = client.search(
    collection_name="test_collection",
    data=query_vectors,
    filter='color["label"] in ["red"]',
    search_params={
        "metric_type": "L2",
        "params": {"nprobe": 16}
    },
    output_fields=["id", "color"],
    limit=3
)

print(res)

# Output
#
# [
#     [
#         {
#             "id": 460,
#             "distance": 0.4016231596469879,
#             "entity": {
#                 "id": 460,
#                 "color": {
#                     "label": "red",
#                     "tag": 5030,
#                     "coord": [14, 32, 40],
#                     "ref": [
#                         [ "pink", "green", "brown" ],
#                         [ "red", "grey", "black"],
#                         [ "red", "yellow", "orange"]
#                     ]
#                 }
#             }
#         },
#         {
#             "id": 785,
#             "distance": 0.451080858707428,
#             "entity": {
#                 "id": 785,
#                 "color": {
#                     "label": "red",
#                     "tag": 5290,
#                     "coord": [31, 13, 23],
#                     "ref": [
#                         ["yellow", "pink", "pink"],
#                         ["purple", "grey", "orange"],
#                         ["grey", "purple", "pink"]
#                     ]
#                 }
#             }
#         },
#         {
#             "id": 355,
#             "distance": 0.5839247703552246,
#             "entity": {
#                 "id": 355,
#                 "color": {
#                     "label": "red",
#                     "tag": 8725,
#                     "coord": [5, 10, 22],
#                     "ref": [
#                         ["white", "purple", "yellow"],
#                         ["white", "purple", "white"],
#                         ["orange", "white", "pink"]
#                     ]
#                 }
#             }
#         }
#     ]
# ]
// 4. Basic search with a JSON field
List<List<Float>> query_vectors = Arrays.asList(Arrays.asList(0.3580376395471989f, -0.6023495712049978f, 0.18414012509913835f, -0.26286205330961354f, 0.9029438446296592f));

SearchReq searchReq = SearchReq.builder()
    .collectionName("test_collection")
    .data(query_vectors)
    .filter("color[\"label\"] in [\"red\"]")
    .outputFields(Arrays.asList("id", "color"))
    .topK(3)
    .build();

SearchResp searchResp = client.search(searchReq);

System.out.println(JSONObject.toJSON(searchResp));

// Output:
// {"searchResults": [[
//     {
//         "distance": 1.2636482,
//         "id": 290,
//         "entity": {
//             "color": {
//                 "coord": [32,37,32],
//                 "ref": [
//                     ["green", "blue", "yellow"],
//                     ["yellow", "pink", "pink"],
//                     ["purple", "red", "brown"]
//                 ],
//                 "label": "red",
//                 "tag": 8949
//             },
//             "id": 290
//         }
//     },
//     {
//         "distance": 1.002122,
//         "id": 629,
//         "entity": {
//             "color": {
//                 "coord": [23,5,35],
//                 "ref": [
//                     ["black", ""yellow", "black"],
//                     ["black", "purple", "white"],
//                     ["black", "brown", "orange"]
//                 ],
//                 "label": "red",
//                 "tag": 5072
//             },
//             "id": 629
//         }
//     },
//     {
//         "distance": 0.9542817,
//         "id": 279,
//         "entity": {
//             "color": {
//                 "coord": [20,33,33],
//                 "ref": [
//                     ["yellow", "white", "brown"],
//                     ["black", "white", "purple"],
//                     ["green", "brown", "blue"]
//                 ],
//                 "label": "red",
//                 "tag": 4704
//             },
//             "id": 279
//         }
//     }
// ]]}
// 4. Basic search with a JSON field
query_vectors = [[0.6765405125697714, 0.759217474274025, 0.4122471841491111, 0.3346805565394215, 0.09679748345514638]]

res = await client.search({
    collection_name: "test_collection",
    data: query_vectors,
    filter: 'color["label"] in ["red"]',
    output_fields: ["color", "id"],
    limit: 3
})

console.log(JSON.stringify(res.results, null, 4))

// Output
// 
// [
//     {
//         "score": 1.777988076210022,
//         "id": "595",
//         "color": {
//             "label": "red",
//             "tag": 7393,
//             "coord": [31,34,18],
//             "ref": [
//                 ["grey", "white", "orange"]
//             ]
//         }
//     },
//     {
//         "score": 1.7542595863342285,
//         "id": "82",
//         "color": {
//             "label": "red",
//             "tag": 8636,
//             "coord": [4,37,29],
//             "ref": [
//                 ["brown", "brown", "pink"]
//             ]
//         }
//     },
//     {
//         "score": 1.7537562847137451,
//         "id": "748",
//         "color": {
//             "label": "red",
//             "tag": 1626,
//             "coord": [31,4,25
//             ],
//             "ref": [
//                 ["grey", "green", "blue"]
//             ]
//         }
//     }
// ]
// 

Filtraggio scalare avanzato

Milvus offre una serie di filtri avanzati per il filtraggio scalare dei campi JSON. Questi filtri sono JSON_CONTAINS, JSON_CONTAINS_ALL, e JSON_CONTAINS_ANY.

  • Filtra tutte le entità che hanno ["blue", "brown", "grey"] come set di colori di riferimento.

    # 5. Advanced search within a JSON field
    
    res = client.query(
        collection_name="test_collection",
        data=query_vectors,
        filter='JSON_CONTAINS(color["ref"], ["blue", "brown", "grey"])',
        output_fields=["id", "color"],
        limit=3
    )
    
    print(res)
    
    # Output
    #
    # [
    #     {
    #         "id": 79,
    #         "color": {
    #             "label": "orange",
    #             "tag": 8857,
    #             "coord": [
    #                 10,
    #                 14,
    #                 5
    #             ],
    #             "ref": [
    #                 [
    #                     "yellow",
    #                     "white",
    #                     "green"
    #                 ],
    #                 [
    #                     "blue",
    #                     "purple",
    #                     "purple"
    #                 ],
    #                 [
    #                     "blue",
    #                     "brown",
    #                     "grey"
    #                 ]
    #             ]
    #         }
    #     },
    #     {
    #         "id": 371,
    #         "color": {
    #             "label": "black",
    #             "tag": 1324,
    #             "coord": [
    #                 2,
    #                 18,
    #                 32
    #             ],
    #             "ref": [
    #                 [
    #                     "purple",
    #                     "orange",
    #                     "brown"
    #                 ],
    #                 [
    #                     "blue",
    #                     "brown",
    #                     "grey"
    #                 ],
    #                 [
    #                     "purple",
    #                     "blue",
    #                     "blue"
    #                 ]
    #             ]
    #         }
    #     },
    #     {
    #         "id": 590,
    #         "color": {
    #             "label": "red",
    #             "tag": 3340,
    #             "coord": [
    #                 13,
    #                 21,
    #                 13
    #             ],
    #             "ref": [
    #                 [
    #                     "yellow",
    #                     "yellow",
    #                     "red"
    #                 ],
    #                 [
    #                     "blue",
    #                     "brown",
    #                     "grey"
    #                 ],
    #                 [
    #                     "pink",
    #                     "yellow",
    #                     "purple"
    #                 ]
    #             ]
    #         }
    #     }
    # ]
    
    // 5. Advanced search within a JSON field
    searchReq = SearchReq.builder()
        .collectionName("test_collection")
        .data(query_vectors)
        .filter("JSON_CONTAINS(color[\"ref\"], [\"purple\", \"pink\", \"orange\"])")
        .outputFields(Arrays.asList("id", "color"))
        .topK(3)
        .build();
    
    searchResp = client.search(searchReq);
    
    System.out.println(JSONObject.toJSON(searchResp));
    
    // Output:
    // {"searchResults": [[
    //     {
    //         "distance": 1.1811467,
    //         "id": 180,
    //         "entity": {
    //             "color": {
    //                 "coord": [
    //                     17,
    //                     26,
    //                     14
    //                 ],
    //                 "ref": [
    //                     [
    //                         "white",
    //                         "black",
    //                         "brown"
    //                     ],
    //                     [
    //                         "purple",
    //                         "pink",
    //                         "orange"
    //                     ],
    //                     [
    //                         "black",
    //                         "pink",
    //                         "red"
    //                     ]
    //                 ],
    //                 "label": "green",
    //                 "tag": 2470
    //             },
    //             "id": 180
    //         }
    //     },
    //     {
    //         "distance": 0.6487204,
    //         "id": 331,
    //         "entity": {
    //             "color": {
    //                 "coord": [
    //                     16,
    //                     32,
    //                     23
    //                 ],
    //                 "ref": [
    //                     [
    //                         "purple",
    //                         "pink",
    //                         "orange"
    //                     ],
    //                     [
    //                         "brown",
    //                         "red",
    //                         "orange"
    //                     ],
    //                     [
    //                         "red",
    //                         "yellow",
    //                         "brown"
    //                     ]
    //                 ],
    //                 "label": "white",
    //                 "tag": 1236
    //             },
    //             "id": 331
    //         }
    //     },
    //     {
    //         "distance": 0.59387654,
    //         "id": 483,
    //         "entity": {
    //             "color": {
    //                 "coord": [
    //                     8,
    //                     33,
    //                     2
    //                 ],
    //                 "ref": [
    //                     [
    //                         "red",
    //                         "orange",
    //                         "brown"
    //                     ],
    //                     [
    //                         "purple",
    //                         "pink",
    //                         "orange"
    //                     ],
    //                     [
    //                         "brown",
    //                         "blue",
    //                         "green"
    //                     ]
    //                 ],
    //                 "label": "pink",
    //                 "tag": 5686
    //             },
    //             "id": 483
    //         }
    //     }
    // ]]}
    
    // 5. Advanced search within a JSON field
    res = await client.search({
        collection_name: "test_collection",
        data: query_vectors,
        filter: 'JSON_CONTAINS(color["ref"], ["blue", "brown", "grey"])',
        output_fields: ["color", "id"],
        limit: 3
    })
    
    console.log(JSON.stringify(res.results, null, 4))
    
    // Output
    // 
    // [
    //     {
    //         "id": 79,
    //         "color": {
    //             "label": "orange",
    //             "tag": 8857,
    //             "coord": [
    //                 10,
    //                 14,
    //                 5
    //             ],
    //             "ref": [
    //                 [
    //                     "yellow",
    //                     "white",
    //                     "green"
    //                 ],
    //                 [
    //                     "blue",
    //                     "purple",
    //                     "purple"
    //                 ],
    //                 [
    //                     "blue",
    //                     "brown",
    //                     "grey"
    //                 ]
    //             ]
    //         }
    //     },
    //     {
    //         "id": 371,
    //         "color": {
    //             "label": "black",
    //             "tag": 1324,
    //             "coord": [
    //                 2,
    //                 18,
    //                 32
    //             ],
    //             "ref": [
    //                 [
    //                     "purple",
    //                     "orange",
    //                     "brown"
    //                 ],
    //                 [
    //                     "blue",
    //                     "brown",
    //                     "grey"
    //                 ],
    //                 [
    //                     "purple",
    //                     "blue",
    //                     "blue"
    //                 ]
    //             ]
    //         }
    //     },
    //     {
    //         "id": 590,
    //         "color": {
    //             "label": "red",
    //             "tag": 3340,
    //             "coord": [
    //                 13,
    //                 21,
    //                 13
    //             ],
    //             "ref": [
    //                 [
    //                     "yellow",
    //                     "yellow",
    //                     "red"
    //                 ],
    //                 [
    //                     "blue",
    //                     "brown",
    //                     "grey"
    //                 ],
    //                 [
    //                     "pink",
    //                     "yellow",
    //                     "purple"
    //                 ]
    //             ]
    //         }
    //     }
    // ]
    // 
    
  • Filtra le entità che hanno il coordinatore di [4, 5].

    res = client.query(
        collection_name="test_collection",
        data=query_vectors,
        filter='JSON_CONTAINS_ALL(color["coord"], [4, 5])',
        output_fields=["id", "color"],
        limit=3
    )
    
    print(res)
    
    # Output
    #
    # [
    #     {
    #         "id": 281,
    #         "color": {
    #             "label": "red",
    #             "tag": 3645,
    #             "coord": [
    #                 5,
    #                 33,
    #                 4
    #             ],
    #             "ref": [
    #                 [
    #                     "orange",
    #                     "blue",
    #                     "pink"
    #                 ],
    #                 [
    #                     "purple",
    #                     "blue",
    #                     "purple"
    #                 ],
    #                 [
    #                     "black",
    #                     "brown",
    #                     "yellow"
    #                 ]
    #             ]
    #         }
    #     },
    #     {
    #         "id": 464,
    #         "color": {
    #             "label": "brown",
    #             "tag": 6261,
    #             "coord": [
    #                 5,
    #                 9,
    #                 4
    #             ],
    #             "ref": [
    #                 [
    #                     "purple",
    #                     "purple",
    #                     "brown"
    #                 ],
    #                 [
    #                     "black",
    #                     "pink",
    #                     "white"
    #                 ],
    #                 [
    #                     "brown",
    #                     "grey",
    #                     "brown"
    #                 ]
    #             ]
    #         }
    #     },
    #     {
    #         "id": 567,
    #         "color": {
    #             "label": "green",
    #             "tag": 4589,
    #             "coord": [
    #                 5,
    #                 39,
    #                 4
    #             ],
    #             "ref": [
    #                 [
    #                     "purple",
    #                     "yellow",
    #                     "white"
    #                 ],
    #                 [
    #                     "yellow",
    #                     "yellow",
    #                     "brown"
    #                 ],
    #                 [
    #                     "blue",
    #                     "red",
    #                     "yellow"
    #                 ]
    #             ]
    #         }
    #     }
    # ]
    
    searchReq = SearchReq.builder()
        .collectionName("test_collection")
        .data(query_vectors)
        .filter("JSON_CONTAINS_ALL(color[\"coord\"], [4, 5])")
        .outputFields(Arrays.asList("id", "color"))
        .topK(3)
        .build();
    
    searchResp = client.search(searchReq);
    
    System.out.println(JSONObject.toJSON(searchResp));     
    
    // Output:
    // {"searchResults": [[
    //     {
    //         "distance": 0.77485126,
    //         "id": 304,
    //         "entity": {
    //             "color": {
    //                 "coord": [
    //                     4,
    //                     5,
    //                     13
    //                 ],
    //                 "ref": [
    //                     [
    //                         "purple",
    //                         "pink",
    //                         "brown"
    //                     ],
    //                     [
    //                         "orange",
    //                         "red",
    //                         "blue"
    //                     ],
    //                     [
    //                         "yellow",
    //                         "blue",
    //                         "purple"
    //                     ]
    //                 ],
    //                 "label": "blue",
    //                 "tag": 7228
    //             },
    //             "id": 304
    //         }
    //     },
    //     {
    //         "distance": 0.68138736,
    //         "id": 253,
    //         "entity": {
    //             "color": {
    //                 "coord": [
    //                     5,
    //                     38,
    //                     4
    //                 ],
    //                 "ref": [
    //                     [
    //                         "black",
    //                         "pink",
    //                         "blue"
    //                     ],
    //                     [
    //                         "pink",
    //                         "brown",
    //                         "pink"
    //                     ],
    //                     [
    //                         "red",
    //                         "pink",
    //                         "orange"
    //                     ]
    //                 ],
    //                 "label": "blue",
    //                 "tag": 6935
    //             },
    //             "id": 253
    //         }
    //     },
    //     {
    //         "distance": 0.56997097,
    //         "id": 944,
    //         "entity": {
    //             "color": {
    //                 "coord": [
    //                     5,
    //                     6,
    //                     4
    //                 ],
    //                 "ref": [
    //                     [
    //                         "blue",
    //                         "yellow",
    //                         "orange"
    //                     ],
    //                     [
    //                         "orange",
    //                         "white",
    //                         "orange"
    //                     ],
    //                     [
    //                         "pink",
    //                         "brown",
    //                         "white"
    //                     ]
    //                 ],
    //                 "label": "pink",
    //                 "tag": 3325
    //             },
    //             "id": 944
    //         }
    //     }
    // ]]}
    
    res = await client.search({
        collection_name: "test_collection",
        data: query_vectors,
        filter: 'JSON_CONTAINS_ALL(color["coord"], [4, 5])',
        output_fields: ["color", "id"],
        limit: 3
    })
    
    console.log(JSON.stringify(res.results, null, 4))
    
    // Output
    // 
    // [
    //     {
    //         "score": 1.8944344520568848,
    //         "id": "792",
    //         "color": {
    //             "label": "purple",
    //             "tag": 8161,
    //             "coord": [
    //                 4,
    //                 38,
    //                 5
    //             ],
    //             "ref": [
    //                 [
    //                     "red",
    //                     "white",
    //                     "grey"
    //                 ]
    //             ]
    //         }
    //     },
    //     {
    //         "score": 1.2801706790924072,
    //         "id": "489",
    //         "color": {
    //             "label": "red",
    //             "tag": 4358,
    //             "coord": [
    //                 5,
    //                 4,
    //                 1
    //             ],
    //             "ref": [
    //                 [
    //                     "blue",
    //                     "orange",
    //                     "orange"
    //                 ]
    //             ]
    //         }
    //     },
    //     {
    //         "score": 1.2097992897033691,
    //         "id": "656",
    //         "color": {
    //             "label": "red",
    //             "tag": 7856,
    //             "coord": [
    //                 5,
    //                 20,
    //                 4
    //             ],
    //             "ref": [
    //                 [
    //                     "black",
    //                     "orange",
    //                     "white"
    //                 ]
    //             ]
    //         }
    //     }
    // ]
    // 
    
  • Filtra le entità che hanno il coordinatore contenente 4 o 5.

    res = client.query(
        collection_name="test_collection",
        data=query_vectors,
        filter='JSON_CONTAINS_ANY(color["coord"], [4, 5])',
        output_fields=["id", "color"],
        limit=3
    )
    
    print(res)
    
    # Output
    #
    # [
    #     {
    #         "id": 0,
    #         "color": {
    #             "label": "yellow",
    #             "tag": 6340,
    #             "coord": [
    #                 40,
    #                 4,
    #                 40
    #             ],
    #             "ref": [
    #                 [
    #                     "purple",
    #                     "yellow",
    #                     "orange"
    #                 ],
    #                 [
    #                     "green",
    #                     "grey",
    #                     "purple"
    #                 ],
    #                 [
    #                     "black",
    #                     "white",
    #                     "yellow"
    #                 ]
    #             ]
    #         }
    #     },
    #     {
    #         "id": 2,
    #         "color": {
    #             "label": "brown",
    #             "tag": 9359,
    #             "coord": [
    #                 38,
    #                 21,
    #                 5
    #             ],
    #             "ref": [
    #                 [
    #                     "red",
    #                     "brown",
    #                     "white"
    #                 ],
    #                 [
    #                     "purple",
    #                     "red",
    #                     "brown"
    #                 ],
    #                 [
    #                     "pink",
    #                     "grey",
    #                     "black"
    #                 ]
    #             ]
    #         }
    #     },
    #     {
    #         "id": 7,
    #         "color": {
    #             "label": "green",
    #             "tag": 3560,
    #             "coord": [
    #                 5,
    #                 9,
    #                 5
    #             ],
    #             "ref": [
    #                 [
    #                     "blue",
    #                     "orange",
    #                     "green"
    #                 ],
    #                 [
    #                     "blue",
    #                     "blue",
    #                     "black"
    #                 ],
    #                 [
    #                     "green",
    #                     "purple",
    #                     "green"
    #                 ]
    #             ]
    #         }
    #     }
    # ]
    
    searchReq = SearchReq.builder()
        .collectionName("test_collection")
        .data(query_vectors)
        .filter("JSON_CONTAINS_ANY(color[\"coord\"], [4, 5])")
        .outputFields(Arrays.asList("id", "color"))
        .topK(3)
        .build();
    
    searchResp = client.search(searchReq);
    
    System.out.println(JSONObject.toJSON(searchResp));   
    
    // Output:
    // {"searchResults": [[
    //     {
    //         "distance": 1.002122,
    //         "id": 629,
    //         "entity": {
    //             "color": {
    //                 "coord": [
    //                     23,
    //                     5,
    //                     35
    //                 ],
    //                 "ref": [
    //                     [
    //                         "black",
    //                         "yellow",
    //                         "black"
    //                     ],
    //                     [
    //                         "black",
    //                         "purple",
    //                         "white"
    //                     ],
    //                     [
    //                         "black",
    //                         "brown",
    //                         "orange"
    //                     ]
    //                 ],
    //                 "label": "red",
    //                 "tag": 5072
    //             },
    //             "id": 629
    //         }
    //     },
    //     {
    //         "distance": 0.85788506,
    //         "id": 108,
    //         "entity": {
    //             "color": {
    //                 "coord": [
    //                     25,
    //                     5,
    //                     38
    //                 ],
    //                 "ref": [
    //                     [
    //                         "green",
    //                         "brown",
    //                         "pink"
    //                     ],
    //                     [
    //                         "purple",
    //                         "green",
    //                         "green"
    //                     ],
    //                     [
    //                         "green",
    //                         "pink",
    //                         "black"
    //                     ]
    //                 ],
    //                 "label": "orange",
    //                 "tag": 8982
    //             },
    //             "id": 108
    //         }
    //     },
    //     {
    //         "distance": 0.80550396,
    //         "id": 120,
    //         "entity": {
    //             "color": {
    //                 "coord": [
    //                     25,
    //                     16,
    //                     4
    //                 ],
    //                 "ref": [
    //                     [
    //                         "red",
    //                         "green",
    //                         "orange"
    //                     ],
    //                     [
    //                         "blue",
    //                         "pink",
    //                         "blue"
    //                     ],
    //                     [
    //                         "brown",
    //                         "black",
    //                         "green"
    //                     ]
    //                 ],
    //                 "label": "purple",
    //                 "tag": 6711
    //             },
    //             "id": 120
    //         }
    //     }
    // ]]}
    
    res = await client.search({
        collection_name: "test_collection",
        data: query_vectors,
        filter: 'JSON_CONTAINS_ANY(color["coord"], [4, 5])',
        output_fields: ["color", "id"],
        limit: 3
    })
    
    console.log(JSON.stringify(res.results, null, 4))
    
    // Output
    // 
    // [
    //     {
    //         "score": 1.9083369970321655,
    //         "id": "453",
    //         "color": {
    //             "label": "brown",
    //             "tag": 8788,
    //             "coord": [
    //                 21,
    //                 18,
    //                 5
    //             ],
    //             "ref": [
    //                 [
    //                     "pink",
    //                     "black",
    //                     "brown"
    //                 ]
    //             ]
    //         }
    //     },
    //     {
    //         "score": 1.8944344520568848,
    //         "id": "792",
    //         "color": {
    //             "label": "purple",
    //             "tag": 8161,
    //             "coord": [
    //                 4,
    //                 38,
    //                 5
    //             ],
    //             "ref": [
    //                 [
    //                     "red",
    //                     "white",
    //                     "grey"
    //                 ]
    //             ]
    //         }
    //     },
    //     {
    //         "score": 1.8615753650665283,
    //         "id": "272",
    //         "color": {
    //             "label": "grey",
    //             "tag": 3400,
    //             "coord": [
    //                 5,
    //                 1,
    //                 32
    //             ],
    //             "ref": [
    //                 [
    //                     "purple",
    //                     "green",
    //                     "white"
    //                 ]
    //             ]
    //         }
    //     }
    // ]
    // 
    

Riferimento ai filtri JSON

Quando si lavora con i campi JSON, è possibile utilizzare i campi JSON come filtri o alcune chiavi specifiche.

note

  • Milvus memorizza i valori stringa nel campo JSON così come sono, senza eseguire l'escape semantico o la conversione.

Ad esempio, 'a"b', "a'b", 'a\\\\'b' e "a\\\\"b" saranno salvati così come sono, mentre 'a'b' e "a"b" saranno trattati come valori non validi.

  • Per costruire espressioni di filtro usando un campo JSON, si possono usare le chiavi all'interno del campo.

  • Se il valore di una chiave è un intero o un float, è possibile confrontarlo con un'altra chiave intera o float o con un campo INT32/64 o FLOAT32/64.

  • Se il valore di una chiave è una stringa, si può confrontare solo con un'altra chiave stringa o con un campo VARCHAR.

Operatori di base nei campi JSON

La tabella seguente presuppone che il valore di un campo JSON denominato json_key abbia una chiave denominata A. La si usi come riferimento quando si costruiscono espressioni booleane usando le chiavi dei campi JSON.

OperatoreEsempiOsservazioni
<'json_field["A"] < 3'Questa espressione è vera se il valore di json_field["A"] è inferiore a 3.
>'json_field["A"] > 1'Questa espressione è vera se il valore di json_field["A"] è maggiore di 1.
=='json_field["A"] == 1'Questa espressione è vera se il valore di json_field["A"] è uguale a 1.
!='json_field["A"][0]' != "abc"'Questa espressione è vera se
- json_field non ha una chiave di nome A.
- json_field ha una chiave di nome A ma json_field["A"] non è una matrice.
- json_field["A"] è un array vuoto.
- json_field["A"] è una matrice ma il primo elemento non è abc.
<='json_field["A"] <= 5'Questa espressione è vera se il valore di json_field["A"] è minore o uguale a 5.
>='json_field["A"] >= 1'Questa espressione è vera se il valore di json_field["A"] è maggiore o uguale a 1.
non'not json_field["A"] == 1'Questa espressione è valutata come vera se
- json_field non ha una chiave di nome A.
- json_field["A"] non è uguale a 1.
in'json_field["A"] in [1, 2, 3]'Questa espressione ha valore vero se il valore di json_field["A"] è 1, 2, o 3.
e (&&)'json_field["A"] > 1 && json_field["A"] < 3'Questa espressione è vera se il valore di json_field["A"] è maggiore di 1 e minore di 3.
o (||)‘json_field[“A”] > 1 || json_field[“A”] < 3’Questa espressione è vera se il valore di json_field["A"] è maggiore di 1 o minore di 3.
esiste'exists json_field["A"]'Questa espressione dà come risultato vero se json_field ha una chiave di nome A.

Operatori avanzati

I seguenti operatori sono specifici per i campi JSON:

  • json_contains(identifier, jsonExpr)

    Questo operatore filtra le entità il cui identificatore contiene l'espressione JSON specificata.

    • Esempio 1: {"x": [1,2,3]}

      json_contains(x, 1) # => True (x contains 1.)
      json_contains(x, "a") # => False (x does not contain a member "a".)
      
    • Esempio 2: {"x", [[1,2,3], [4,5,6], [7,8,9]]}

      json_contains(x, [1,2,3]) # => True (x contains [1,2,3].)
      json_contains(x, [3,2,1]) # => False (x does contain a member [3,2,1].)
      
  • json_contains_all(identifier, jsonExpr)

    Questo operatore filtra le entità il cui identificatore contiene tutti i membri dell'espressione JSON.

    Esempio: {"x": [1,2,3,4,5,7,8]}

    json_contains_all(x, [1,2,8]) # => True (x contains 1, 2, and 8.)
    json_contains_all(x, [4,5,6]) # => False (x does not has a member 6.)
    
  • json_contains_any(identifier, jsonExpr)

    Questo operatore filtra le entità il cui identificatore contiene qualsiasi membro dell'espressione JSON.

    Esempio: {"x": [1,2,3,4,5,7,8]}

    json_contains_any(x, [1,2,8]) # => True (x contains 1, 2, and 8.)
    json_contains_any(x, [4,5,6]) # => True (x contains 4 and 5.)
    json_contains_any(x, [6,9]) # => False (x contains none of 6 and 9.)
    

Tradotto daDeepLogo

Feedback

Questa pagina è stata utile?