Nullable e Default
Milvus consente di impostare l'attributo nullable
e i valori predefiniti per i campi scalari, ad eccezione del campo primario. Per i campi contrassegnati come nullable=True
, è possibile ignorare il campo quando si inseriscono i dati, oppure impostarlo direttamente su un valore nullo, e il sistema lo tratterà come nullo senza causare un errore. Quando un campo ha un valore predefinito, il sistema lo applica automaticamente se non vengono specificati dati per il campo durante l'inserimento.
Gli attributi valore predefinito e nullable semplificano la migrazione dei dati da altri sistemi di database a Milvus, consentendo di gestire i set di dati con valori nulli e di preservare le impostazioni dei valori predefiniti. Quando si crea una collezione, si può anche abilitare il nullable o impostare valori predefiniti per i campi i cui valori potrebbero essere incerti.
Limiti
Solo i campi scalari, escluso il campo primario, supportano i valori predefiniti e l'attributo nullable.
I campi JSON e Array non supportano i valori predefiniti.
I valori predefiniti o l'attributo nullable possono essere configurati solo durante la creazione della collezione e non possono essere modificati in seguito.
I campi scalari con l'attributo nullable abilitato non possono essere utilizzati come
group_by_field
nella ricerca per raggruppamento. Per ulteriori informazioni sulla ricerca per raggruppamento, consultare la sezione Ricerca per raggruppamento.I campi contrassegnati come nullable non possono essere usati come chiavi di partizione. Per ulteriori informazioni sulle chiavi di partizione, vedere Uso della chiave di partizione.
Quando si crea un indice su un campo scalare con l'attributo nullable abilitato, i valori nulli saranno esclusi dall'indice.
Attributo nullable
L'attributo nullable
consente di memorizzare valori nulli in una collezione, fornendo flessibilità nella gestione di dati sconosciuti.
Impostare l'attributo nullable
Quando si crea una collezione, usare nullable=True
per definire i campi nullable (per impostazione predefinita False
). L'esempio seguente crea un insieme chiamato user_profiles_null
e imposta il campo age
come nullable.
from pymilvus import MilvusClient, DataType
client = MilvusClient(uri='http://localhost:19530')
# Define collection schema
schema = client.create_schema(
auto_id=False,
enable_dynamic_schema=True,
)
schema.add_field(field_name="id", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=5)
schema.add_field(field_name="age", datatype=DataType.INT64, nullable=True) # Nullable field
# Set index params
index_params = client.prepare_index_params()
index_params.add_index(field_name="vector", index_type="IVF_FLAT", metric_type="L2", params={ "nlist": 128 })
# Create collection
client.create_collection(collection_name="user_profiles_null", schema=schema, index_params=index_params)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.common.DataType;
import io.milvus.v2.common.IndexParam;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;
import java.util.*;
MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
.uri("http://localhost:19530")
.build());
CreateCollectionReq.CollectionSchema schema = client.createSchema();
schema.setEnableDynamicField(true);
schema.addField(AddFieldReq.builder()
.fieldName("id")
.dataType(DataType.Int64)
.isPrimaryKey(true)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("vector")
.dataType(DataType.FloatVector)
.dimension(5)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("age")
.dataType(DataType.Int64)
.isNullable(true)
.build());
List<IndexParam> indexes = new ArrayList<>();
Map<String,Object> extraParams = new HashMap<>();
extraParams.put("nlist", 128);
indexes.add(IndexParam.builder()
.fieldName("vector")
.indexType(IndexParam.IndexType.IVF_FLAT)
.metricType(IndexParam.MetricType.L2)
.extraParams(extraParams)
.build());
CreateCollectionReq requestCreate = CreateCollectionReq.builder()
.collectionName("user_profiles_null")
.collectionSchema(schema)
.indexParams(indexes)
.build();
client.createCollection(requestCreate);
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const client = new MilvusClient({
address: "http://localhost:19530",
token: "root:Milvus",
});
await client.createCollection({
collection_name: "user_profiles_null",
schema: [
{
name: "id",
is_primary_key: true,
data_type: DataType.int64,
},
{ name: "vector", data_type: DataType.Int64, dim: 5 },
{ name: "age", data_type: DataType.FloatVector, nullable: true },
],
index_params: [
{
index_name: "vector_inde",
field_name: "vector",
metric_type: MetricType.L2,
index_type: IndexType.AUTOINDEX,
},
],
});
export pkField='{
"fieldName": "id",
"dataType": "Int64",
"isPrimary": true
}'
export vectorField='{
"fieldName": "vector",
"dataType": "FloatVector",
"elementTypeParams": {
"dim": 5
}
}'
export nullField='{
"fieldName": "age",
"dataType": "Int64",
"nullable": true
}'
export schema="{
\"autoID\": false,
\"fields\": [
$pkField,
$vectorField,
$nullField
]
}"
export indexParams='[
{
"fieldName": "vector",
"metricType": "L2",
"indexType": "IVF_FLAT",
"params":{"nlist": 128}
}
]'
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
\"collectionName\": \"user_profiles_null\",
\"schema\": $schema,
\"indexParams\": $indexParams
}"
Inserire entità
Quando si inseriscono dati in un campo nullable, si inserisce null o si omette direttamente il campo.
data = [
{"id": 1, "vector": [0.1, 0.2, 0.3, 0.4, 0.5], "age": 30},
{"id": 2, "vector": [0.2, 0.3, 0.4, 0.5, 0.6], "age": None},
{"id": 3, "vector": [0.3, 0.4, 0.5, 0.6, 0.7]}
]
client.insert(collection_name="user_profiles_null", data=data)
import com.google.gson.Gson;
import com.google.gson.JsonObject;
import io.milvus.v2.service.vector.request.InsertReq;
import io.milvus.v2.service.vector.response.InsertResp;
List<JsonObject> rows = new ArrayList<>();
Gson gson = new Gson();
rows.add(gson.fromJson("{\"id\": 1, \"vector\": [0.1, 0.2, 0.3, 0.4, 0.5], \"age\": 30}", JsonObject.class));
rows.add(gson.fromJson("{\"id\": 2, \"vector\": [0.2, 0.3, 0.4, 0.5, 0.6], \"age\": null}", JsonObject.class));
rows.add(gson.fromJson("{\"id\": 3, \"vector\": [0.3, 0.4, 0.5, 0.6, 0.7]}", JsonObject.class));
InsertResp insertR = client.insert(InsertReq.builder()
.collectionName("user_profiles_null")
.data(rows)
.build());
const data = [
{ id: 1, vector: [0.1, 0.2, 0.3, 0.4, 0.5], age: 30 },
{ id: 2, vector: [0.2, 0.3, 0.4, 0.5, 0.6], age: null },
{ id: 3, vector: [0.3, 0.4, 0.5, 0.6, 0.7] },
];
client.insert({
collection_name: "user_profiles_null",
data: data,
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/insert" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"data": [
{"id": 1, "vector": [0.1, 0.2, 0.3, 0.4, 0.5], "age": 30},
{"id": 2, "vector": [0.2, 0.3, 0.4, 0.5, 0.6], "age": null},
{"id": 3, "vector": [0.3, 0.4, 0.5, 0.6, 0.7]}
],
"collectionName": "user_profiles_null"
}'
Ricerca e interrogazione con valori nulli
Quando si utilizza il metodo search
, se un campo contiene valori null
, il risultato della ricerca restituirà il campo come nullo.
res = client.search(
collection_name="user_profiles_null",
data=[[0.1, 0.2, 0.4, 0.3, 0.128]],
limit=2,
search_params={"params": {"nprobe": 16}},
output_fields=["id", "age"]
)
print(res)
# Output
# data: ["[{'id': 1, 'distance': 0.15838398039340973, 'entity': {'age': 30, 'id': 1}}, {'id': 2, 'distance': 0.28278401494026184, 'entity': {'age': None, 'id': 2}}]"]
import io.milvus.v2.service.vector.request.SearchReq;
import io.milvus.v2.service.vector.request.data.FloatVec;
import io.milvus.v2.service.vector.response.SearchResp;
Map<String,Object> params = new HashMap<>();
params.put("nprobe", 16);
SearchResp resp = client.search(SearchReq.builder()
.collectionName("user_profiles_null")
.annsField("vector")
.data(Collections.singletonList(new FloatVec(new float[]{0.1f, 0.2f, 0.3f, 0.4f, 0.5f})))
.topK(2)
.searchParams(params)
.outputFields(Arrays.asList("id", "age"))
.build());
System.out.println(resp.getSearchResults());
// Output
//
// [[SearchResp.SearchResult(entity={id=1, age=30}, score=0.0, id=1), SearchResp.SearchResult(entity={id=2, age=null}, score=0.050000004, id=2)]]
client.search({
collection_name: 'user_profiles_null',
data: [0.3, -0.6, 0.1, 0.3, 0.5],
limit: 2,
output_fields: ['age', 'id'],
filter: '25 <= age <= 35',
params: {
nprobe: 16
}
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "user_profiles_null",
"data": [
[0.1, -0.2, 0.3, 0.4, 0.5]
],
"annsField": "vector",
"limit": 5,
"outputFields": ["id", "age"]
}'
#{"code":0,"cost":0,"data":[{"age":30,"distance":0.16000001,"id":1},{"age":null,"distance":0.28999996,"id":2},{"age":null,"distance":0.52000004,"id":3}]}
Quando si utilizza il metodo query
per il filtraggio scalare, i risultati del filtraggio per i valori nulli sono tutti falsi, a indicare che non saranno selezionati.
# Reviewing previously inserted data:
# {"id": 1, "vector": [0.1, 0.2, ..., 0.128], "age": 30}
# {"id": 2, "vector": [0.2, 0.3, ..., 0.129], "age": None}
# {"id": 3, "vector": [0.3, 0.4, ..., 0.130], "age": None} # Omitted age column is treated as None
results = client.query(
collection_name="user_profiles_null",
filter="age >= 0",
output_fields=["id", "age"]
)
# Example output:
# [
# {"id": 1, "age": 30}
# ]
# Note: Entities with `age` as `null` (id 2 and 3) will not appear in the result.
import io.milvus.v2.service.vector.request.QueryReq;
import io.milvus.v2.service.vector.response.QueryResp;
QueryResp resp = client.query(QueryReq.builder()
.collectionName("user_profiles_null")
.filter("age >= 0")
.outputFields(Arrays.asList("id", "age"))
.build());
System.out.println(resp.getQueryResults());
// Output
//
// [QueryResp.QueryResult(entity={id=1, age=30})]
const results = await client.query(
collection_name: "user_profiles_null",
filter: "age >= 0",
output_fields: ["id", "age"]
);
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "user_profiles_null",
"filter": "age >= 0",
"outputFields": ["id", "age"]
}'
# {"code":0,"cost":0,"data":[{"age":30,"id":1}]}
Per interrogare entità con valori null
, utilizzare un'espressione vuota ""
.
null_results = client.query(
collection_name="user_profiles_null",
filter="",
output_fields=["id", "age"]
)
# Example output:
# [{"id": 2, "age": None}, {"id": 3, "age": None}]
QueryResp resp = client.query(QueryReq.builder()
.collectionName("user_profiles_null")
.filter("")
.outputFields(Arrays.asList("id", "age"))
.limit(10)
.build());
System.out.println(resp.getQueryResults());
const results = await client.query(
collection_name: "user_profiles_null",
filter: "",
output_fields: ["id", "age"]
);
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "user_profiles_null",
"expr": "",
"outputFields": ["id", "age"]
}'
# {"code":0,"cost":0,"data":[{"age":30,"id":1},{"age":null,"id":2},{"age":null,"id":3}]}
Valori predefiniti
I valori predefiniti sono valori predefiniti assegnati ai campi scalari. Se non si fornisce un valore per un campo con un valore predefinito durante l'inserimento, il sistema utilizza automaticamente il valore predefinito.
Impostazione dei valori predefiniti
Quando si crea una collezione, utilizzare il parametro default_value
per definire il valore predefinito di un campo. L'esempio seguente mostra come impostare il valore predefinito di age
su 18
e di status
su "active"
.
schema = client.create_schema(
auto_id=False,
enable_dynamic_schema=True,
)
schema.add_field(field_name="id", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=5)
schema.add_field(field_name="age", datatype=DataType.INT64, default_value=18)
schema.add_field(field_name="status", datatype=DataType.VARCHAR, default_value="active", max_length=10)
index_params = client.prepare_index_params()
index_params.add_index(field_name="vector", index_type="IVF_FLAT", metric_type="L2", params={ "nlist": 128 })
client.create_collection(collection_name="user_profiles_default", schema=schema, index_params=index_params)
import io.milvus.v2.common.DataType;
import io.milvus.v2.common.IndexParam;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;
import java.util.*;
CreateCollectionReq.CollectionSchema schema = client.createSchema();
schema.setEnableDynamicField(true);
schema.addField(AddFieldReq.builder()
.fieldName("id")
.dataType(DataType.Int64)
.isPrimaryKey(true)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("vector")
.dataType(DataType.FloatVector)
.dimension(5)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("age")
.dataType(DataType.Int64)
.defaultValue(18L)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("status")
.dataType(DataType.VarChar)
.maxLength(10)
.defaultValue("active")
.build());
List<IndexParam> indexes = new ArrayList<>();
Map<String,Object> extraParams = new HashMap<>();
extraParams.put("nlist", 128);
indexes.add(IndexParam.builder()
.fieldName("vector")
.indexType(IndexParam.IndexType.IVF_FLAT)
.metricType(IndexParam.MetricType.L2)
.extraParams(extraParams)
.build());
CreateCollectionReq requestCreate = CreateCollectionReq.builder()
.collectionName("user_profiles_default")
.collectionSchema(schema)
.indexParams(indexes)
.build();
client.createCollection(requestCreate);
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const client = new MilvusClient({
address: "http://localhost:19530",
token: "root:Milvus",
});
await client.createCollection({
collection_name: "user_profiles_default",
schema: [
{
name: "id",
is_primary_key: true,
data_type: DataType.int64,
},
{ name: "vector", data_type: DataType.FloatVector, dim: 5 },
{ name: "age", data_type: DataType.Int64, default_value: 18 },
{ name: 'status', data_type: DataType.VarChar, max_length: 30, default_value: 'active'},
],
index_params: [
{
index_name: "vector_inde",
field_name: "vector",
metric_type: MetricType.L2,
index_type: IndexType.IVF_FLAT,
},
],
});
export pkField='{
"fieldName": "id",
"dataType": "Int64",
"isPrimary": true
}'
export vectorField='{
"fieldName": "vector",
"dataType": "FloatVector",
"elementTypeParams": {
"dim": 5
}
}'
export defaultValueField1='{
"fieldName": "age",
"dataType": "Int64",
"defaultValue": 18
}'
export defaultValueField2='{
"fieldName": "status",
"dataType": "VarChar",
"defaultValue": "active",
"elementTypeParams": {
"max_length": 10
}
}'
export schema="{
\"autoID\": false,
\"fields\": [
$pkField,
$vectorField,
$defaultValueField1,
$defaultValueField2
]
}"
export indexParams='[
{
"fieldName": "vector",
"metricType": "L2",
"indexType": "IVF_FLAT",
"params":{"nlist": 128}
}
]'
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
\"collectionName\": \"user_profiles_default\",
\"schema\": $schema,
\"indexParams\": $indexParams
}"
Inserire entità
Quando si inseriscono i dati, se si omettono i campi con un valore predefinito o si imposta il loro valore su null, il sistema utilizza il valore predefinito.
data = [
{"id": 1, "vector": [0.1, 0.2, ..., 0.128], "age": 30, "status": "premium"},
{"id": 2, "vector": [0.2, 0.3, ..., 0.129]},
{"id": 3, "vector": [0.3, 0.4, ..., 0.130], "age": 25, "status": None},
{"id": 4, "vector": [0.4, 0.5, ..., 0.131], "age": None, "status": "inactive"}
]
client.insert(collection_name="user_profiles_default", data=data)
import com.google.gson.Gson;
import com.google.gson.JsonObject;
import io.milvus.v2.service.vector.request.InsertReq;
import io.milvus.v2.service.vector.response.InsertResp;
List<JsonObject> rows = new ArrayList<>();
Gson gson = new Gson();
rows.add(gson.fromJson("{\"id\": 1, \"vector\": [0.1, 0.2, 0.3, 0.4, 0.5], \"age\": 30, \"status\": \"premium\"}", JsonObject.class));
rows.add(gson.fromJson("{\"id\": 2, \"vector\": [0.2, 0.3, 0.4, 0.5, 0.6]}", JsonObject.class));
rows.add(gson.fromJson("{\"id\": 3, \"vector\": [0.3, 0.4, 0.5, 0.6, 0.7], \"age\": 25, \"status\": null}", JsonObject.class));
rows.add(gson.fromJson("{\"id\": 4, \"vector\": [0.4, 0.5, 0.6, 0.7, 0.8], \"age\": null, \"status\": \"inactive\"}", JsonObject.class));
InsertResp insertR = client.insert(InsertReq.builder()
.collectionName("user_profiles_default")
.data(rows)
.build());
const data = [
{"id": 1, "vector": [0.1, 0.2, 0.3, 0.4, 0.5], "age": 30, "status": "premium"},
{"id": 2, "vector": [0.2, 0.3, 0.4, 0.5, 0.6]},
{"id": 3, "vector": [0.3, 0.4, 0.5, 0.6, 0.7], "age": 25, "status": null},
{"id": 4, "vector": [0.4, 0.5, 0.6, 0.7, 0.8], "age": null, "status": "inactive"}
];
client.insert({
collection_name: "user_profiles_default",
data: data,
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/insert" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"data": [
{"id": 1, "vector": [0.1, 0.2, 0.3, 0.4, 0.5], "age": 30, "status": "premium"},
{"id": 2, "vector": [0.2, 0.3, 0.4, 0.5, 0.6]},
{"id": 3, "vector": [0.3, 0.4, 0.5, 0.6, 0.7], "age": 25, "status": null},
{"id": 4, "vector": [0.4, 0.5, 0.6, 0.7, 0.8], "age": null, "status": "inactive"}
],
"collectionName": "user_profiles_default"
}'
Per ulteriori informazioni sull'efficacia delle impostazioni dei valori nullable e predefiniti, consultare le Regole applicabili.
Ricerca e interrogazione con valori predefiniti
Le entità che contengono valori predefiniti vengono trattate come tutte le altre entità durante le ricerche vettoriali e i filtri scalari. È possibile includere valori predefiniti come parte delle operazioni search
e query
.
Ad esempio, in un'operazione search
, le entità con age
impostato sul valore predefinito di 18
saranno incluse nei risultati.
res = client.search(
collection_name="user_profiles_default",
data=[[0.1, 0.2, 0.4, 0.3, 0.128]],
search_params={"params": {"nprobe": 16}},
filter="age == 18", # 18 is the default value of the `age` field
limit=10,
output_fields=["id", "age", "status"]
)
print(res)
# Output
# data: ["[{'id': 2, 'distance': 0.28278401494026184, 'entity': {'id': 2, 'age': 18, 'status': 'active'}}, {'id': 4, 'distance': 0.8315839767456055, 'entity': {'id': 4, 'age': 18, 'status': 'inactive'}}]"]
import io.milvus.v2.service.vector.request.SearchReq;
import io.milvus.v2.service.vector.request.data.FloatVec;
import io.milvus.v2.service.vector.response.SearchResp;
Map<String,Object> params = new HashMap<>();
params.put("nprobe", 16);
SearchResp resp = client.search(SearchReq.builder()
.collectionName("user_profiles_default")
.annsField("vector")
.data(Collections.singletonList(new FloatVec(new float[]{0.1f, 0.2f, 0.3f, 0.4f, 0.5f})))
.searchParams(params)
.filter("age == 18")
.topK(10)
.outputFields(Arrays.asList("id", "age", "status"))
.build());
System.out.println(resp.getSearchResults());
// Output
//
// [[SearchResp.SearchResult(entity={id=2, age=18, status=active}, score=0.050000004, id=2), SearchResp.SearchResult(entity={id=4, age=18, status=inactive}, score=0.45000002, id=4)]]
client.search({
collection_name: 'user_profiles_default',
data: [0.3, -0.6, 0.1, 0.3, 0.5],
limit: 2,
output_fields: ['age', 'id', 'status'],
filter: 'age == 18',
params: {
nprobe: 16
}
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "user_profiles_default",
"data": [
[0.1, 0.2, 0.3, 0.4, 0.5]
],
"annsField": "vector",
"limit": 5,
"filter": "age == 18",
"outputFields": ["id", "age", "status"]
}'
# {"code":0,"cost":0,"data":[{"age":18,"distance":0.050000004,"id":2,"status":"active"},{"age":18,"distance":0.45000002,"id":4,"status":"inactive"}]}
In un'operazione query
, è possibile abbinare o filtrare direttamente i valori predefiniti.
# Query all entities where `age` equals the default value (18)
default_age_results = client.query(
collection_name="user_profiles_default",
filter="age == 18",
output_fields=["id", "age", "status"]
)
# Query all entities where `status` equals the default value ("active")
default_status_results = client.query(
collection_name="user_profiles_default",
filter='status == "active"',
output_fields=["id", "age", "status"]
)
import io.milvus.v2.service.vector.request.QueryReq;
import io.milvus.v2.service.vector.response.QueryResp;
QueryResp ageResp = client.query(QueryReq.builder()
.collectionName("user_profiles_default")
.filter("age == 18")
.outputFields(Arrays.asList("id", "age", "status"))
.build());
System.out.println(ageResp.getQueryResults());
// Output
//
// [QueryResp.QueryResult(entity={id=2, age=18, status=active}), QueryResp.QueryResult(entity={id=4, age=18, status=inactive})]
QueryResp statusResp = client.query(QueryReq.builder()
.collectionName("user_profiles_default")
.filter("status == \"active\"")
.outputFields(Arrays.asList("id", "age", "status"))
.build());
System.out.println(statusResp.getQueryResults());
// Output
//
// [QueryResp.QueryResult(entity={id=2, age=18, status=active}), QueryResp.QueryResult(entity={id=3, age=25, status=active})]
// Query all entities where `age` equals the default value (18)
const default_age_results = await client.query(
collection_name: "user_profiles_default",
filter: "age == 18",
output_fields: ["id", "age", "status"]
);
// Query all entities where `status` equals the default value ("active")
const default_status_results = await client.query(
collection_name: "user_profiles_default",
filter: 'status == "active"',
output_fields: ["id", "age", "status"]
)
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "user_profiles_default",
"filter": "age == 18",
"outputFields": ["id", "age", "status"]
}'
# {"code":0,"cost":0,"data":[{"age":18,"id":2,"status":"active"},{"age":18,"id":4,"status":"inactive"}]}
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "user_profiles_default",
"filter": "status == \"active\"",
"outputFields": ["id", "age", "status"]
}'
# {"code":0,"cost":0,"data":[{"age":18,"id":2,"status":"active"},{"age":25,"id":3,"status":"active"}]}
Regole applicabili
La tabella seguente riassume il comportamento delle colonne nullable e dei valori predefiniti in diverse combinazioni di configurazione. Queste regole determinano il modo in cui Milvus gestisce i dati quando si tenta di inserire valori nulli o se i valori dei campi non vengono forniti.
Nullabile | Valore predefinito | Tipo di valore predefinito | Input dell'utente | Risultato | Esempio |
---|---|---|---|---|---|
✅ | ✅ | Non-nullo | Nessuno/nullo | Utilizza il valore predefinito |
|
✅ | ❌ | - | Nessuno/nullo | Memorizzato come nullo |
|
❌ | ✅ | Non-nullo | Nessuno/nullo | Utilizza il valore predefinito |
|
❌ | ❌ | - | Nessuno/null | Lancia un errore |
|
❌ | ✅ | Nullo | Nessuno/null | Lancia un errore |
|