milvus-logo
LFAI
Home
  • Tutoriels

Visualisation des vecteurs

Open In Colab GitHub Repository

Dans cet exemple, nous allons montrer comment visualiser les embeddings (vecteurs) dans Milvus à l'aide de t-SNE.

Les techniques de réduction de la dimensionnalité, telles que le t-SNE, sont inestimables pour visualiser des données complexes à haute dimension dans un espace 2D ou 3D tout en préservant la structure locale. Cela permet la reconnaissance des formes, améliore la compréhension des relations entre les caractéristiques et facilite l'interprétation des résultats des modèles d'apprentissage automatique. En outre, il facilite l'évaluation des algorithmes en comparant visuellement les résultats des regroupements, simplifie la présentation des données à un public non spécialisé et peut réduire les coûts de calcul en travaillant avec des représentations de dimensions inférieures. Grâce à ces applications, le t-SNE permet non seulement d'obtenir des informations plus approfondies sur les ensembles de données, mais aussi de prendre des décisions plus éclairées.

Préparation

Dépendances et environnement

$ pip install --upgrade pymilvus openai requests tqdm matplotlib seaborn

Nous utiliserons le modèle d'intégration d'OpenAI dans cet exemple. Vous devez préparer la clé api OPENAI_API_KEY en tant que variable d'environnement.

import os

os.environ["OPENAI_API_KEY"] = "sk-***********"

Préparer les données

Nous utilisons les pages FAQ de la documentation Milvus 2.4.x comme connaissance privée dans notre RAG, qui est une bonne source de données pour un pipeline RAG simple.

Téléchargez le fichier zip et extrayez les documents dans le dossier milvus_docs.

$ wget https://github.com/milvus-io/milvus-docs/releases/download/v2.4.6-preview/milvus_docs_2.4.x_en.zip
$ unzip -q milvus_docs_2.4.x_en.zip -d milvus_docs

Nous chargeons tous les fichiers markdown à partir du dossier milvus_docs/en/faq. Pour chaque document, nous utilisons simplement "# " pour séparer le contenu du fichier, ce qui permet de séparer grossièrement le contenu de chaque partie principale du fichier markdown.

from glob import glob

text_lines = []

for file_path in glob("milvus_docs/en/faq/*.md", recursive=True):
    with open(file_path, "r") as file:
        file_text = file.read()

    text_lines += file_text.split("# ")

Préparation du modèle d'intégration

Nous initialisons le client OpenAI pour préparer le modèle d'intégration.

from openai import OpenAI

openai_client = OpenAI()

Définir une fonction pour générer des embeddings de texte à l'aide du client OpenAI. Nous utilisons le modèle text-embedding-3-large comme exemple.

def emb_text(text):
    return (
        openai_client.embeddings.create(input=text, model="text-embedding-3-large")
        .data[0]
        .embedding
    )

Générer un embedding de test et imprimer sa dimension et ses premiers éléments.

test_embedding = emb_text("This is a test")
embedding_dim = len(test_embedding)
print(embedding_dim)
print(test_embedding[:10])
3072
[-0.015370666049420834, 0.00234124343842268, -0.01011690590530634, 0.044725317507982254, -0.017235849052667618, -0.02880779094994068, -0.026678944006562233, 0.06816216558218002, -0.011376636102795601, 0.021659553050994873]

Charger les données dans Milvus

Créer la collection

from pymilvus import MilvusClient

milvus_client = MilvusClient(uri="./milvus_demo.db")

collection_name = "my_rag_collection"

Comme pour l'argument de MilvusClient:

  • Définir uri comme fichier local, par exemple./milvus.db, est la méthode la plus pratique, car elle utilise automatiquement Milvus Lite pour stocker toutes les données dans ce fichier.
  • Si vous avez des données à grande échelle, vous pouvez configurer un serveur Milvus plus performant sur docker ou kubernetes. Dans cette configuration, veuillez utiliser l'uri du serveur, par exemplehttp://localhost:19530, comme votre uri.
  • Si vous souhaitez utiliser Zilliz Cloud, le service cloud entièrement géré pour Milvus, ajustez les adresses uri et token, qui correspondent au point de terminaison public et à la clé Api dans Zilliz Cloud.

Vérifier si la collection existe déjà et la supprimer si c'est le cas.

if milvus_client.has_collection(collection_name):
    milvus_client.drop_collection(collection_name)

Créer une nouvelle collection avec les paramètres spécifiés.

Si nous ne spécifions aucune information de champ, Milvus créera automatiquement un champ id par défaut pour la clé primaire et un champ vector pour stocker les données vectorielles. Un champ JSON réservé est utilisé pour stocker les champs non définis par le schéma et leurs valeurs.

milvus_client.create_collection(
    collection_name=collection_name,
    dimension=embedding_dim,
    metric_type="IP",  # Inner product distance
    consistency_level="Strong",  # Strong consistency level
)

Insérer des données

Parcourez les lignes de texte, créez des enchâssements, puis insérez les données dans Milvus.

Voici un nouveau champ text, qui est un champ non défini dans le schéma de la collection. Il sera automatiquement ajouté au champ dynamique JSON réservé, qui peut être traité comme un champ normal à un niveau élevé.

from tqdm import tqdm

data = []

for i, line in enumerate(tqdm(text_lines, desc="Creating embeddings")):
    data.append({"id": i, "vector": emb_text(line), "text": line})

milvus_client.insert(collection_name=collection_name, data=data)
Creating embeddings: 100%|██████████| 72/72 [00:20<00:00,  3.60it/s]





{'insert_count': 72, 'ids': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71], 'cost': 0}

Dans cette section, nous effectuons une recherche milvus et visualisons ensuite le vecteur de la requête et le vecteur récupéré ensemble en dimension réduite.

Récupérer des données pour une requête

Préparons une question pour la recherche.

# Modify the question to test it with your own query!

question = "How is data stored in Milvus?"

Cherchons la question dans la collection et récupérons les 10 meilleures réponses sémantiques.

search_res = milvus_client.search(
    collection_name=collection_name,
    data=[
        emb_text(question)
    ],  # Use the `emb_text` function to convert the question to an embedding vector
    limit=10,  # Return top 10 results
    search_params={"metric_type": "IP", "params": {}},  # Inner product distance
    output_fields=["text"],  # Return the text field
)

Jetons un coup d'œil aux résultats de la recherche de la question

import json

retrieved_lines_with_distances = [
    (res["entity"]["text"], res["distance"]) for res in search_res[0]
]
print(json.dumps(retrieved_lines_with_distances, indent=4))
[
    [
        " Where does Milvus store data?\n\nMilvus deals with two types of data, inserted data and metadata. \n\nInserted data, including vector data, scalar data, and collection-specific schema, are stored in persistent storage as incremental log. Milvus supports multiple object storage backends, including [MinIO](https://min.io/), [AWS S3](https://aws.amazon.com/s3/?nc1=h_ls), [Google Cloud Storage](https://cloud.google.com/storage?hl=en#object-storage-for-companies-of-all-sizes) (GCS), [Azure Blob Storage](https://azure.microsoft.com/en-us/products/storage/blobs), [Alibaba Cloud OSS](https://www.alibabacloud.com/product/object-storage-service), and [Tencent Cloud Object Storage](https://www.tencentcloud.com/products/cos) (COS).\n\nMetadata are generated within Milvus. Each Milvus module has its own metadata that are stored in etcd.\n\n###",
        0.7675539255142212
    ],
    [
        "How does Milvus handle vector data types and precision?\n\nMilvus supports Binary, Float32, Float16, and BFloat16 vector types.\n\n- Binary vectors: Store binary data as sequences of 0s and 1s, used in image processing and information retrieval.\n- Float32 vectors: Default storage with a precision of about 7 decimal digits. Even Float64 values are stored with Float32 precision, leading to potential precision loss upon retrieval.\n- Float16 and BFloat16 vectors: Offer reduced precision and memory usage. Float16 is suitable for applications with limited bandwidth and storage, while BFloat16 balances range and efficiency, commonly used in deep learning to reduce computational requirements without significantly impacting accuracy.\n\n###",
        0.6210848689079285
    ],
    [
        "Does the query perform in memory? What are incremental data and historical data?\n\nYes. When a query request comes, Milvus searches both incremental data and historical data by loading them into memory. Incremental data are in the growing segments, which are buffered in memory before they reach the threshold to be persisted in storage engine, while historical data are from the sealed segments that are stored in the object storage. Incremental data and historical data together constitute the whole dataset to search.\n\n###",
        0.585393488407135
    ],
    [
        "Why is there no vector data in etcd?\n\netcd stores Milvus module metadata; MinIO stores entities.\n\n###",
        0.579704999923706
    ],
    [
        "How does Milvus flush data?\n\nMilvus returns success when inserted data are loaded to the message queue. However, the data are not yet flushed to the disk. Then Milvus' data node writes the data in the message queue to persistent storage as incremental logs. If `flush()` is called, the data node is forced to write all data in the message queue to persistent storage immediately.\n\n###",
        0.5777501463890076
    ],
    [
        "What is the maximum dataset size Milvus can handle?\n\n  \nTheoretically, the maximum dataset size Milvus can handle is determined by the hardware it is run on, specifically system memory and storage:\n\n- Milvus loads all specified collections and partitions into memory before running queries. Therefore, memory size determines the maximum amount of data Milvus can query.\n- When new entities and and collection-related schema (currently only MinIO is supported for data persistence) are added to Milvus, system storage determines the maximum allowable size of inserted data.\n\n###",
        0.5655910968780518
    ],
    [
        "Does Milvus support inserting and searching data simultaneously?\n\nYes. Insert operations and query operations are handled by two separate modules that are mutually independent. From the client\u2019s perspective, an insert operation is complete when the inserted data enters the message queue. However, inserted data are unsearchable until they are loaded to the query node. If the segment size does not reach the index-building threshold (512 MB by default), Milvus resorts to brute-force search and query performance may be diminished.\n\n###",
        0.5618637204170227
    ],
    [
        "What data types does Milvus support on the primary key field?\n\nIn current release, Milvus supports both INT64 and string.\n\n###",
        0.5561620593070984
    ],
    [
        "Is Milvus available for concurrent search?\n\nYes. For queries on the same collection, Milvus concurrently searches the incremental and historical data. However, queries on different collections are conducted in series. Whereas the historical data can be an extremely huge dataset, searches on the historical data are relatively more time-consuming and essentially performed in series.\n\n###",
        0.529681921005249
    ],
    [
        "Can vectors with duplicate primary keys be inserted into Milvus?\n\nYes. Milvus does not check if vector primary keys are duplicates.\n\n###",
        0.528809666633606
    ]
]

Réduction de la dimensionnalité à 2-d par t-SNE

Réduisons la dimension des encastrements à 2-d par t-SNE. Nous utiliserons la bibliothèque sklearn pour effectuer la transformation t-SNE.

import pandas as pd
import numpy as np
from sklearn.manifold import TSNE

data.append({"id": len(data), "vector": emb_text(question), "text": question})
embeddings = []
for gp in data:
    embeddings.append(gp["vector"])

X = np.array(embeddings, dtype=np.float32)
tsne = TSNE(random_state=0, max_iter=1000)
tsne_results = tsne.fit_transform(X)

df_tsne = pd.DataFrame(tsne_results, columns=["TSNE1", "TSNE2"])
df_tsne
TSNE1 TSNE2
0 -3.877362 0.866726
1 -5.923084 0.671701
2 -0.645954 0.240083
3 0.444582 1.222875
4 6.503896 -4.984684
... ... ...
69 6.354055 1.264959
70 6.055961 1.266211
71 -1.516003 1.328765
72 3.971772 -0.681780
73 3.971772 -0.681780

74 lignes × 2 colonnes

Visualisation des résultats de la recherche Milvus sur un plan 2D

Nous représenterons le vecteur de la requête en vert, les vecteurs retrouvés en rouge et les vecteurs restants en bleu.

import matplotlib.pyplot as plt
import seaborn as sns

# Extract similar ids from search results
similar_ids = [gp["id"] for gp in search_res[0]]

df_norm = df_tsne[:-1]

df_query = pd.DataFrame(df_tsne.iloc[-1]).T

# Filter points based on similar ids
similar_points = df_tsne[df_tsne.index.isin(similar_ids)]

# Create the plot
fig, ax = plt.subplots(figsize=(8, 6))  # Set figsize

# Set the style of the plot
sns.set_style("darkgrid", {"grid.color": ".6", "grid.linestyle": ":"})

# Plot all points in blue
sns.scatterplot(
    data=df_tsne, x="TSNE1", y="TSNE2", color="blue", label="All knowledge", ax=ax
)

# Overlay similar points in red
sns.scatterplot(
    data=similar_points,
    x="TSNE1",
    y="TSNE2",
    color="red",
    label="Similar knowledge",
    ax=ax,
)

sns.scatterplot(
    data=df_query, x="TSNE1", y="TSNE2", color="green", label="Query", ax=ax
)

# Set plot titles and labels
plt.title("Scatter plot of knowledge using t-SNE")
plt.xlabel("TSNE1")
plt.ylabel("TSNE2")

# Set axis to be equal
plt.axis("equal")

# Display the legend
plt.legend()

# Show the plot
plt.show()

png png

Comme nous pouvons le voir, le vecteur de la requête est proche des vecteurs retrouvés. Bien que les vecteurs retrouvés ne se situent pas à l'intérieur d'un cercle standard de rayon fixe centré sur la requête, nous pouvons voir qu'ils sont toujours très proches du vecteur de la requête sur le plan 2D.

L'utilisation de techniques de réduction de la dimensionnalité peut faciliter la compréhension des vecteurs et la résolution des problèmes. Nous espérons que ce tutoriel vous permettra de mieux comprendre les vecteurs.

Traduit parDeepL

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

Cette page a-t - elle été utile ?