Respuesta a preguntas utilizando Milvus y Cohere
Esta página ilustra cómo crear un sistema de respuesta a preguntas basado en el conjunto de datos SQuAD utilizando Milvus como base de datos vectorial y Cohere como sistema de incrustación.
Antes de empezar
Los fragmentos de código de esta página requieren pymilvus, cohere, pandas, numpy y tqdm instalados. Entre estos paquetes, pymilvus es el cliente para Milvus. Si no está presente en su sistema, ejecute los siguientes comandos para instalarlos:
pip install pymilvus cohere pandas numpy tqdm
A continuación, debe cargar los módulos que se utilizarán en esta guía.
import cohere
import pandas
import numpy as np
from tqdm import tqdm
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility
Parámetros
Aquí podemos encontrar los parámetros utilizados en los siguientes fragmentos. Algunos de ellos necesitan ser cambiados para adaptarse a su entorno. Al lado de cada uno hay una descripción de lo que es.
FILE = 'https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json' # The SQuAD dataset url
COLLECTION_NAME = 'question_answering_db' # Collection name
DIMENSION = 1024 # Embeddings size, cohere embeddings default to 4096 with the large model
COUNT = 5000 # How many questions to embed and insert into Milvus
BATCH_SIZE = 96 # How large of batches to use for embedding and insertion
MILVUS_HOST = 'localhost' # Milvus server URI
MILVUS_PORT = '19530'
COHERE_API_KEY = 'replace-this-with-the-cohere-api-key' # API key obtained from Cohere
Para saber más sobre el modelo y el conjunto de datos utilizados en esta página, consulte co:here y SQuAD.
Preparar el conjunto de datos
En este ejemplo, vamos a utilizar el Stanford Question Answering Dataset (SQuAD) como nuestra fuente de verdad para responder preguntas. Este conjunto de datos viene en forma de archivo JSON y vamos a utilizar pandas para cargarlo.
# Download the dataset
dataset = pandas.read_json(FILE)
# Clean up the dataset by grabbing all the question answer pairs
simplified_records = []
for x in dataset['data']:
for y in x['paragraphs']:
for z in y['qas']:
if len(z['answers']) != 0:
simplified_records.append({'question': z['question'], 'answer': z['answers'][0]['text']})
# Grab the amount of records based on COUNT
simplified_records = pandas.DataFrame.from_records(simplified_records)
simplified_records = simplified_records.sample(n=min(COUNT, len(simplified_records)), random_state = 42)
# Check the length of the cleaned dataset matches count
print(len(simplified_records))
El resultado será el número de registros del conjunto de datos.
5000
Crear una colección
Esta sección trata sobre Milvus y la configuración de la base de datos para este caso de uso. Dentro de Milvus, necesitamos crear una colección e indexarla.
# Connect to Milvus Database
connections.connect(host=MILVUS_HOST, port=MILVUS_PORT)
# Remove collection if it already exists
if utility.has_collection(COLLECTION_NAME):
utility.drop_collection(COLLECTION_NAME)
# Create collection which includes the id, title, and embedding.
fields = [
FieldSchema(name='id', dtype=DataType.INT64, is_primary=True, auto_id=True),
FieldSchema(name='original_question', dtype=DataType.VARCHAR, max_length=1000),
FieldSchema(name='answer', dtype=DataType.VARCHAR, max_length=1000),
FieldSchema(name='original_question_embedding', dtype=DataType.FLOAT_VECTOR, dim=DIMENSION)
]
schema = CollectionSchema(fields=fields)
collection = Collection(name=COLLECTION_NAME, schema=schema)
# Create an IVF_FLAT index for collection.
index_params = {
'metric_type':'IP',
'index_type':"IVF_FLAT",
'params':{"nlist": 1024}
}
collection.create_index(field_name="original_question_embedding", index_params=index_params)
collection.load()
Insertar datos
Una vez creada la colección, tenemos que empezar a insertar los datos. Esto se hace en tres pasos
- leer los datos,
- incrustar las preguntas originales, e
- insertar los datos en la colección que acabamos de crear en Milvus.
En este ejemplo, los datos incluyen la pregunta original, la incrustación de la pregunta original y la respuesta a la pregunta original.
# Set up a co:here client.
cohere_client = cohere.Client(COHERE_API_KEY)
# Extract embeddings from questions using Cohere
def embed(texts, input_type):
res = cohere_client.embed(texts, model='embed-multilingual-v3.0', input_type=input_type)
return res.embeddings
# Insert each question, answer, and qustion embedding
total = pandas.DataFrame()
for batch in tqdm(np.array_split(simplified_records, (COUNT/BATCH_SIZE) + 1)):
questions = batch['question'].tolist()
embeddings = embed(questions, "search_document")
data = [
{
'original_question': x,
'answer': batch['answer'].tolist()[i],
'original_question_embedding': embeddings[i]
} for i, x in enumerate(questions)
]
collection.insert(data=data)
time.sleep(10)
Formular preguntas
Una vez que todos los datos están insertados en la colección Milvus, podemos hacer preguntas al sistema tomando nuestra frase de pregunta, incrustándola con Cohere y buscando en la colección.
Las búsquedas realizadas en los datos justo después de la inserción pueden ser un poco más lentas, ya que la búsqueda de datos no indexados se realiza por fuerza bruta. Una vez que los nuevos datos se indexen automáticamente, las búsquedas se acelerarán.
# Search the cluster for an answer to a question text
def search(text, top_k = 5):
# AUTOINDEX does not require any search params
search_params = {}
results = collection.search(
data = embed([text], "search_query"), # Embeded the question
anns_field='original_question_embedding',
param=search_params,
limit = top_k, # Limit to top_k results per search
output_fields=['original_question', 'answer'] # Include the original question and answer in the result
)
distances = results[0].distances
entities = [ x.entity.to_dict()['entity'] for x in results[0] ]
ret = [ {
"answer": x[1]["answer"],
"distance": x[0],
"original_question": x[1]['original_question']
} for x in zip(distances, entities)]
return ret
# Ask these questions
search_questions = ['What kills bacteria?', 'What\'s the biggest dog?']
# Print out the results in order of [answer, similarity score, original question]
ret = [ { "question": x, "candidates": search(x) } for x in search_questions ]
El resultado debería ser similar al siguiente:
# Output
#
# [
# {
# "question": "What kills bacteria?",
# "candidates": [
# {
# "answer": "farming",
# "distance": 0.6261022090911865,
# "original_question": "What makes bacteria resistant to antibiotic treatment?"
# },
# {
# "answer": "Phage therapy",
# "distance": 0.6093736886978149,
# "original_question": "What has been talked about to treat resistant bacteria?"
# },
# {
# "answer": "oral contraceptives",
# "distance": 0.5902313590049744,
# "original_question": "In therapy, what does the antibacterial interact with?"
# },
# {
# "answer": "slowing down the multiplication of bacteria or killing the bacteria",
# "distance": 0.5874154567718506,
# "original_question": "How do antibiotics work?"
# },
# {
# "answer": "in intensive farming to promote animal growth",
# "distance": 0.5667208433151245,
# "original_question": "Besides in treating human disease where else are antibiotics used?"
# }
# ]
# },
# {
# "question": "What's the biggest dog?",
# "candidates": [
# {
# "answer": "English Mastiff",
# "distance": 0.7875324487686157,
# "original_question": "What breed was the largest dog known to have lived?"
# },
# {
# "answer": "forest elephants",
# "distance": 0.5886962413787842,
# "original_question": "What large animals reside in the national park?"
# },
# {
# "answer": "Rico",
# "distance": 0.5634892582893372,
# "original_question": "What is the name of the dog that could ID over 200 things?"
# },
# {
# "answer": "Iditarod Trail Sled Dog Race",
# "distance": 0.546872615814209,
# "original_question": "Which dog-sled race in Alaska is the most famous?"
# },
# {
# "answer": "part of the family",
# "distance": 0.5387814044952393,
# "original_question": "Most people today describe their dogs as what?"
# }
# ]
# }
# ]