milvus-logo
LFAI
Home
  • Benutzerhandbuch

Nullbar & Standard

In Milvus können Sie das Attribut nullable und Standardwerte für skalare Felder mit Ausnahme des Primärfelds festlegen. Für Felder, die als nullable=True markiert sind, können Sie das Feld beim Einfügen von Daten überspringen oder es direkt auf einen Nullwert setzen, und das System wird es als Null behandeln, ohne einen Fehler zu verursachen. Wenn ein Feld einen Standardwert hat, wendet das System diesen Wert automatisch an, wenn beim Einfügen keine Daten für das Feld angegeben werden.

Die Attribute "Standardwert" und "löschbar" vereinfachen die Datenmigration von anderen Datenbanksystemen zu Milvus, indem sie die Handhabung von Datensätzen mit Nullwerten und die Beibehaltung von Standardwerteinstellungen ermöglichen. Bei der Erstellung einer Sammlung können Sie auch löschbare Werte aktivieren oder Standardwerte für Felder festlegen, deren Werte unsicher sein könnten.

Begrenzt

  • Nur skalare Felder, mit Ausnahme des Primärfelds, unterstützen Standardwerte und das Attribut "nullable".

  • JSON- und Array-Felder unterstützen keine Standardwerte.

  • Standardwerte oder das Attribut "löschbar" können nur während der Erstellung der Sammlung konfiguriert werden und können danach nicht mehr geändert werden.

  • Skalarfelder, bei denen das Attribut "löschbar" aktiviert ist, können nicht als group_by_field in der Gruppierungssuche verwendet werden. Weitere Informationen zur Gruppierungssuche finden Sie unter Gruppierungssuche.

  • Als löschbar markierte Felder können nicht als Partitionsschlüssel verwendet werden. Weitere Informationen zu Partitionsschlüsseln finden Sie unter Partitionsschlüssel verwenden.

  • Wenn Sie einen Index für ein skalares Feld erstellen, bei dem das Attribut "löschbar" aktiviert ist, werden Nullwerte vom Index ausgeschlossen.

Nullable-Attribut

Das nullable -Attribut ermöglicht es Ihnen, Nullwerte in einer Sammlung zu speichern, was Flexibilität beim Umgang mit unbekannten Daten bietet.

Setzen Sie das nullable-Attribut

Wenn Sie eine Sammlung erstellen, verwenden Sie nullable=True, um löschbare Felder zu definieren (die Standardeinstellung ist False). Das folgende Beispiel erstellt eine Sammlung mit dem Namen user_profiles_null und setzt das Feld age als löschbar.

from pymilvus import MilvusClient, DataType

client = MilvusClient(uri='http://localhost:19530')

# Define collection schema
schema = client.create_schema(
    auto_id=False,
    enable_dynamic_schema=True,
)

schema.add_field(field_name="id", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=5)
schema.add_field(field_name="age", datatype=DataType.INT64, nullable=True) # Nullable field

# Set index params
index_params = client.prepare_index_params()
index_params.add_index(field_name="vector", index_type="IVF_FLAT", metric_type="L2", params={ "nlist": 128 })

# Create collection
client.create_collection(collection_name="user_profiles_null", schema=schema, index_params=index_params)

import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.common.DataType;
import io.milvus.v2.common.IndexParam;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;

import java.util.*;

MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
        .uri("http://localhost:19530")
        .build());
        
CreateCollectionReq.CollectionSchema schema = client.createSchema();
schema.setEnableDynamicField(true);

schema.addField(AddFieldReq.builder()
        .fieldName("id")
        .dataType(DataType.Int64)
        .isPrimaryKey(true)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("vector")
        .dataType(DataType.FloatVector)
        .dimension(5)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("age")
        .dataType(DataType.Int64)
        .isNullable(true)
        .build());

List<IndexParam> indexes = new ArrayList<>();
Map<String,Object> extraParams = new HashMap<>();
extraParams.put("nlist", 128);
indexes.add(IndexParam.builder()
        .fieldName("vector")
        .indexType(IndexParam.IndexType.IVF_FLAT)
        .metricType(IndexParam.MetricType.L2)
        .extraParams(extraParams)
        .build());

CreateCollectionReq requestCreate = CreateCollectionReq.builder()
        .collectionName("user_profiles_null")
        .collectionSchema(schema)
        .indexParams(indexes)
        .build();
client.createCollection(requestCreate);

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const client = new MilvusClient({
  address: "http://localhost:19530",
  token: "root:Milvus",
});

await client.createCollection({
  collection_name: "user_profiles_null",
  schema: [
    {
      name: "id",
      is_primary_key: true,
      data_type: DataType.int64,
    },
    { name: "vector", data_type: DataType.Int64, dim: 5 },

    { name: "age", data_type: DataType.FloatVector, nullable: true },
  ],

  index_params: [
    {
      index_name: "vector_inde",
      field_name: "vector",
      metric_type: MetricType.L2,
      index_type: IndexType.AUTOINDEX,
    },
  ],
});


export pkField='{
    "fieldName": "id",
    "dataType": "Int64",
    "isPrimary": true
}'

export vectorField='{
    "fieldName": "vector",
    "dataType": "FloatVector",
    "elementTypeParams": {
        "dim": 5
    }
}'

export nullField='{
    "fieldName": "age",
    "dataType": "Int64",
    "nullable": true
}'

export schema="{
    \"autoID\": false,
    \"fields\": [
        $pkField,
        $vectorField,
        $nullField
    ]
}"

export indexParams='[
        {
            "fieldName": "vector",
            "metricType": "L2",
            "indexType": "IVF_FLAT",
            "params":{"nlist": 128}
        }
    ]'

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
    \"collectionName\": \"user_profiles_null\",
    \"schema\": $schema,
    \"indexParams\": $indexParams
}"

Einfügen von Entitäten

Wenn Sie Daten in ein löschbares Feld einfügen, fügen Sie null ein oder lassen das Feld direkt aus.

data = [
    {"id": 1, "vector": [0.1, 0.2, 0.3, 0.4, 0.5], "age": 30},
    {"id": 2, "vector": [0.2, 0.3, 0.4, 0.5, 0.6], "age": None},
    {"id": 3, "vector": [0.3, 0.4, 0.5, 0.6, 0.7]}
]

client.insert(collection_name="user_profiles_null", data=data)

import com.google.gson.Gson;
import com.google.gson.JsonObject;

import io.milvus.v2.service.vector.request.InsertReq;
import io.milvus.v2.service.vector.response.InsertResp;

List<JsonObject> rows = new ArrayList<>();
Gson gson = new Gson();
rows.add(gson.fromJson("{\"id\": 1, \"vector\": [0.1, 0.2, 0.3, 0.4, 0.5], \"age\": 30}", JsonObject.class));
rows.add(gson.fromJson("{\"id\": 2, \"vector\": [0.2, 0.3, 0.4, 0.5, 0.6], \"age\": null}", JsonObject.class));
rows.add(gson.fromJson("{\"id\": 3, \"vector\": [0.3, 0.4, 0.5, 0.6, 0.7]}", JsonObject.class));

InsertResp insertR = client.insert(InsertReq.builder()
        .collectionName("user_profiles_null")
        .data(rows)
        .build());

const data = [
  { id: 1, vector: [0.1, 0.2, 0.3, 0.4, 0.5], age: 30 },
  { id: 2, vector: [0.2, 0.3, 0.4, 0.5, 0.6], age: null },
  { id: 3, vector: [0.3, 0.4, 0.5, 0.6, 0.7] },
];

client.insert({
  collection_name: "user_profiles_null",
  data: data,
});


curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/insert" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "data": [
        {"id": 1, "vector": [0.1, 0.2, 0.3, 0.4, 0.5], "age": 30},
        {"id": 2, "vector": [0.2, 0.3, 0.4, 0.5, 0.6], "age": null}, 
        {"id": 3, "vector": [0.3, 0.4, 0.5, 0.6, 0.7]} 
    ],
    "collectionName": "user_profiles_null"
}'

Suchen und Abfragen mit Nullwerten

Wenn Sie die Methode search verwenden und ein Feld null Werte enthält, wird das Suchergebnis das Feld als null zurückgeben.

res = client.search(
    collection_name="user_profiles_null",
    data=[[0.1, 0.2, 0.4, 0.3, 0.128]],
    limit=2,
    search_params={"params": {"nprobe": 16}},
    output_fields=["id", "age"]
)

print(res)

# Output
# data: ["[{'id': 1, 'distance': 0.15838398039340973, 'entity': {'age': 30, 'id': 1}}, {'id': 2, 'distance': 0.28278401494026184, 'entity': {'age': None, 'id': 2}}]"] 

import io.milvus.v2.service.vector.request.SearchReq;
import io.milvus.v2.service.vector.request.data.FloatVec;
import io.milvus.v2.service.vector.response.SearchResp;

Map<String,Object> params = new HashMap<>();
params.put("nprobe", 16);
SearchResp resp = client.search(SearchReq.builder()
        .collectionName("user_profiles_null")
        .annsField("vector")
        .data(Collections.singletonList(new FloatVec(new float[]{0.1f, 0.2f, 0.3f, 0.4f, 0.5f})))
        .topK(2)
        .searchParams(params)
        .outputFields(Arrays.asList("id", "age"))
        .build());

System.out.println(resp.getSearchResults());

// Output
//
// [[SearchResp.SearchResult(entity={id=1, age=30}, score=0.0, id=1), SearchResp.SearchResult(entity={id=2, age=null}, score=0.050000004, id=2)]]

client.search({
    collection_name: 'user_profiles_null',
    data: [0.3, -0.6, 0.1, 0.3, 0.5],
    limit: 2,
    output_fields: ['age', 'id'],
    filter: '25 <= age <= 35',
    params: {
        nprobe: 16
    }
});

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "user_profiles_null",
    "data": [
        [0.1, -0.2, 0.3, 0.4, 0.5]
    ],
    "annsField": "vector",
    "limit": 5,
    "outputFields": ["id", "age"]
}'

#{"code":0,"cost":0,"data":[{"age":30,"distance":0.16000001,"id":1},{"age":null,"distance":0.28999996,"id":2},{"age":null,"distance":0.52000004,"id":3}]}

Wenn Sie die Methode query für die skalare Filterung verwenden, sind die Filterungsergebnisse für Null-Werte alle falsch, was bedeutet, dass sie nicht ausgewählt werden.

# Reviewing previously inserted data:
# {"id": 1, "vector": [0.1, 0.2, ..., 0.128], "age": 30}
# {"id": 2, "vector": [0.2, 0.3, ..., 0.129], "age": None}
# {"id": 3, "vector": [0.3, 0.4, ..., 0.130], "age": None}  # Omitted age  column is treated as None

results = client.query(
    collection_name="user_profiles_null",
    filter="age >= 0",
    output_fields=["id", "age"]
)

# Example output:
# [
#     {"id": 1, "age": 30}
# ]
# Note: Entities with `age` as `null` (id 2 and 3) will not appear in the result.

import io.milvus.v2.service.vector.request.QueryReq;
import io.milvus.v2.service.vector.response.QueryResp;

QueryResp resp = client.query(QueryReq.builder()
        .collectionName("user_profiles_null")
        .filter("age >= 0")
        .outputFields(Arrays.asList("id", "age"))
        .build());

System.out.println(resp.getQueryResults());

// Output
//
// [QueryResp.QueryResult(entity={id=1, age=30})]

const results = await client.query(
    collection_name: "user_profiles_null",
    filter: "age >= 0",
    output_fields: ["id", "age"]
);

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "user_profiles_null",
    "filter": "age >= 0",
    "outputFields": ["id", "age"]
}'

# {"code":0,"cost":0,"data":[{"age":30,"id":1}]}

Um Entitäten mit null Werten abzufragen, verwenden Sie einen leeren Ausdruck "".

null_results = client.query(
    collection_name="user_profiles_null",
    filter="",
    output_fields=["id", "age"]
)

# Example output:
# [{"id": 2, "age": None}, {"id": 3, "age": None}]

QueryResp resp = client.query(QueryReq.builder()
        .collectionName("user_profiles_null")
        .filter("")
        .outputFields(Arrays.asList("id", "age"))
        .limit(10)
        .build());

System.out.println(resp.getQueryResults());

const results = await client.query(
    collection_name: "user_profiles_null",
    filter: "",
    output_fields: ["id", "age"]
);

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "user_profiles_null",
    "expr": "",
    "outputFields": ["id", "age"]
}'

# {"code":0,"cost":0,"data":[{"age":30,"id":1},{"age":null,"id":2},{"age":null,"id":3}]}

Standardwerte

Standardwerte sind voreingestellte Werte, die skalaren Feldern zugewiesen werden. Wenn Sie während des Einfügens keinen Wert für ein Feld mit einem Standardwert angeben, verwendet das System automatisch den Standardwert.

Festlegen von Standardwerten

Verwenden Sie beim Erstellen einer Sammlung den Parameter default_value, um den Standardwert für ein Feld festzulegen. Das folgende Beispiel zeigt, wie Sie den Standardwert von age auf 18 und status auf "active" setzen.

schema = client.create_schema(
    auto_id=False,
    enable_dynamic_schema=True,
)

schema.add_field(field_name="id", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=5)
schema.add_field(field_name="age", datatype=DataType.INT64, default_value=18)
schema.add_field(field_name="status", datatype=DataType.VARCHAR, default_value="active", max_length=10)

index_params = client.prepare_index_params()
index_params.add_index(field_name="vector", index_type="IVF_FLAT", metric_type="L2", params={ "nlist": 128 })

client.create_collection(collection_name="user_profiles_default", schema=schema, index_params=index_params)

import io.milvus.v2.common.DataType;
import io.milvus.v2.common.IndexParam;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;

import java.util.*;

CreateCollectionReq.CollectionSchema schema = client.createSchema();
schema.setEnableDynamicField(true);

schema.addField(AddFieldReq.builder()
        .fieldName("id")
        .dataType(DataType.Int64)
        .isPrimaryKey(true)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("vector")
        .dataType(DataType.FloatVector)
        .dimension(5)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("age")
        .dataType(DataType.Int64)
        .defaultValue(18L)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("status")
        .dataType(DataType.VarChar)
        .maxLength(10)
        .defaultValue("active")
        .build());

List<IndexParam> indexes = new ArrayList<>();
Map<String,Object> extraParams = new HashMap<>();
extraParams.put("nlist", 128);
indexes.add(IndexParam.builder()
        .fieldName("vector")
        .indexType(IndexParam.IndexType.IVF_FLAT)
        .metricType(IndexParam.MetricType.L2)
        .extraParams(extraParams)
        .build());

CreateCollectionReq requestCreate = CreateCollectionReq.builder()
        .collectionName("user_profiles_default")
        .collectionSchema(schema)
        .indexParams(indexes)
        .build();
client.createCollection(requestCreate);

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const client = new MilvusClient({
  address: "http://localhost:19530",
  token: "root:Milvus",
});

await client.createCollection({
  collection_name: "user_profiles_default",
  schema: [
    {
      name: "id",
      is_primary_key: true,
      data_type: DataType.int64,
    },
    { name: "vector", data_type: DataType.FloatVector, dim: 5 },
    { name: "age", data_type: DataType.Int64, default_value: 18 },
    { name: 'status', data_type: DataType.VarChar, max_length: 30, default_value: 'active'},
  ],

  index_params: [
    {
      index_name: "vector_inde",
      field_name: "vector",
      metric_type: MetricType.L2,
      index_type: IndexType.IVF_FLAT,
    },
  ],
});


export pkField='{
    "fieldName": "id",
    "dataType": "Int64",
    "isPrimary": true
}'

export vectorField='{
    "fieldName": "vector",
    "dataType": "FloatVector",
    "elementTypeParams": {
        "dim": 5
    }
}'

export defaultValueField1='{
    "fieldName": "age",
    "dataType": "Int64",
    "defaultValue": 18
}'

export defaultValueField2='{
    "fieldName": "status",
    "dataType": "VarChar",
    "defaultValue": "active",
    "elementTypeParams": {
        "max_length": 10
    }
}'

export schema="{
    \"autoID\": false,
    \"fields\": [
        $pkField,
        $vectorField,
        $defaultValueField1,
        $defaultValueField2
    ]
}"

export indexParams='[
        {
            "fieldName": "vector",
            "metricType": "L2",
            "indexType": "IVF_FLAT",
            "params":{"nlist": 128}
        }
    ]'

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
    \"collectionName\": \"user_profiles_default\",
    \"schema\": $schema,
    \"indexParams\": $indexParams
}"

Einfügen von Entitäten

Wenn Sie beim Einfügen von Daten Felder mit einem Standardwert auslassen oder ihren Wert auf null setzen, verwendet das System den Standardwert.

data = [
    {"id": 1, "vector": [0.1, 0.2, ..., 0.128], "age": 30, "status": "premium"},
    {"id": 2, "vector": [0.2, 0.3, ..., 0.129]},
    {"id": 3, "vector": [0.3, 0.4, ..., 0.130], "age": 25, "status": None}, 
    {"id": 4, "vector": [0.4, 0.5, ..., 0.131], "age": None, "status": "inactive"} 
]

client.insert(collection_name="user_profiles_default", data=data)

import com.google.gson.Gson;
import com.google.gson.JsonObject;

import io.milvus.v2.service.vector.request.InsertReq;
import io.milvus.v2.service.vector.response.InsertResp;

List<JsonObject> rows = new ArrayList<>();
Gson gson = new Gson();
rows.add(gson.fromJson("{\"id\": 1, \"vector\": [0.1, 0.2, 0.3, 0.4, 0.5], \"age\": 30, \"status\": \"premium\"}", JsonObject.class));
rows.add(gson.fromJson("{\"id\": 2, \"vector\": [0.2, 0.3, 0.4, 0.5, 0.6]}", JsonObject.class));
rows.add(gson.fromJson("{\"id\": 3, \"vector\": [0.3, 0.4, 0.5, 0.6, 0.7], \"age\": 25, \"status\": null}", JsonObject.class));
rows.add(gson.fromJson("{\"id\": 4, \"vector\": [0.4, 0.5, 0.6, 0.7, 0.8], \"age\": null, \"status\": \"inactive\"}", JsonObject.class));

InsertResp insertR = client.insert(InsertReq.builder()
        .collectionName("user_profiles_default")
        .data(rows)
        .build());

const data = [
    {"id": 1, "vector": [0.1, 0.2, 0.3, 0.4, 0.5], "age": 30, "status": "premium"},
    {"id": 2, "vector": [0.2, 0.3, 0.4, 0.5, 0.6]}, 
    {"id": 3, "vector": [0.3, 0.4, 0.5, 0.6, 0.7], "age": 25, "status": null}, 
    {"id": 4, "vector": [0.4, 0.5, 0.6, 0.7, 0.8], "age": null, "status": "inactive"}  
];

client.insert({
  collection_name: "user_profiles_default",
  data: data,
});

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/insert" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "data": [
        {"id": 1, "vector": [0.1, 0.2, 0.3, 0.4, 0.5], "age": 30, "status": "premium"},
        {"id": 2, "vector": [0.2, 0.3, 0.4, 0.5, 0.6]},
        {"id": 3, "vector": [0.3, 0.4, 0.5, 0.6, 0.7], "age": 25, "status": null}, 
        {"id": 4, "vector": [0.4, 0.5, 0.6, 0.7, 0.8], "age": null, "status": "inactive"}      
    ],
    "collectionName": "user_profiles_default"
}'

Weitere Informationen darüber, wie nullbare und Standardwerteinstellungen wirksam werden, finden Sie unter Anwendbare Regeln.

Suche und Abfrage mit Standardwerten

Entitäten, die Standardwerte enthalten, werden bei der Vektorsuche und skalaren Filterung genauso behandelt wie alle anderen Entitäten. Sie können Standardwerte als Teil Ihrer search und query Operationen einschließen.

Bei einer search -Operation werden zum Beispiel Entitäten, bei denen age auf den Standardwert 18 gesetzt ist, in die Ergebnisse aufgenommen.

res = client.search(
    collection_name="user_profiles_default",
    data=[[0.1, 0.2, 0.4, 0.3, 0.128]],
    search_params={"params": {"nprobe": 16}},
    filter="age == 18",  # 18 is the default value of the `age` field
    limit=10,
    output_fields=["id", "age", "status"]
)

print(res)

# Output
# data: ["[{'id': 2, 'distance': 0.28278401494026184, 'entity': {'id': 2, 'age': 18, 'status': 'active'}}, {'id': 4, 'distance': 0.8315839767456055, 'entity': {'id': 4, 'age': 18, 'status': 'inactive'}}]"] 


import io.milvus.v2.service.vector.request.SearchReq;
import io.milvus.v2.service.vector.request.data.FloatVec;
import io.milvus.v2.service.vector.response.SearchResp;

Map<String,Object> params = new HashMap<>();
params.put("nprobe", 16);
SearchResp resp = client.search(SearchReq.builder()
        .collectionName("user_profiles_default")
        .annsField("vector")
        .data(Collections.singletonList(new FloatVec(new float[]{0.1f, 0.2f, 0.3f, 0.4f, 0.5f})))
        .searchParams(params)
        .filter("age == 18")
        .topK(10)
        .outputFields(Arrays.asList("id", "age", "status"))
        .build());

System.out.println(resp.getSearchResults());

// Output
//
// [[SearchResp.SearchResult(entity={id=2, age=18, status=active}, score=0.050000004, id=2), SearchResp.SearchResult(entity={id=4, age=18, status=inactive}, score=0.45000002, id=4)]]

client.search({
    collection_name: 'user_profiles_default',
    data: [0.3, -0.6, 0.1, 0.3, 0.5],
    limit: 2,
    output_fields: ['age', 'id', 'status'],
    filter: 'age == 18',
    params: {
        nprobe: 16
    }
});

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "user_profiles_default",
    "data": [
        [0.1, 0.2, 0.3, 0.4, 0.5]
    ],
    "annsField": "vector",
    "limit": 5,
    "filter": "age == 18",
    "outputFields": ["id", "age", "status"]
}'

# {"code":0,"cost":0,"data":[{"age":18,"distance":0.050000004,"id":2,"status":"active"},{"age":18,"distance":0.45000002,"id":4,"status":"inactive"}]}

Bei einer query -Operation können Sie direkt nach Standardwerten suchen oder filtern.

# Query all entities where `age` equals the default value (18)
default_age_results = client.query(
    collection_name="user_profiles_default",
    filter="age == 18",
    output_fields=["id", "age", "status"]
)

# Query all entities where `status` equals the default value ("active")
default_status_results = client.query(
    collection_name="user_profiles_default",
    filter='status == "active"',
    output_fields=["id", "age", "status"]
)

import io.milvus.v2.service.vector.request.QueryReq;
import io.milvus.v2.service.vector.response.QueryResp;

QueryResp ageResp = client.query(QueryReq.builder()
        .collectionName("user_profiles_default")
        .filter("age == 18")
        .outputFields(Arrays.asList("id", "age", "status"))
        .build());

System.out.println(ageResp.getQueryResults());

// Output
//
// [QueryResp.QueryResult(entity={id=2, age=18, status=active}), QueryResp.QueryResult(entity={id=4, age=18, status=inactive})]

QueryResp statusResp = client.query(QueryReq.builder()
        .collectionName("user_profiles_default")
        .filter("status == \"active\"")
        .outputFields(Arrays.asList("id", "age", "status"))
        .build());

System.out.println(statusResp.getQueryResults());

// Output
//
// [QueryResp.QueryResult(entity={id=2, age=18, status=active}), QueryResp.QueryResult(entity={id=3, age=25, status=active})]

// Query all entities where `age` equals the default value (18)
const default_age_results = await client.query(
    collection_name: "user_profiles_default",
    filter: "age == 18",
    output_fields: ["id", "age", "status"]
);
// Query all entities where `status` equals the default value ("active")
const default_status_results = await client.query(
    collection_name: "user_profiles_default",
    filter: 'status == "active"',
    output_fields: ["id", "age", "status"]
)

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "user_profiles_default",
    "filter": "age == 18",
    "outputFields": ["id", "age", "status"]
}'

# {"code":0,"cost":0,"data":[{"age":18,"id":2,"status":"active"},{"age":18,"id":4,"status":"inactive"}]}

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "user_profiles_default",
    "filter": "status == \"active\"",
    "outputFields": ["id", "age", "status"]
}'

# {"code":0,"cost":0,"data":[{"age":18,"id":2,"status":"active"},{"age":25,"id":3,"status":"active"}]}

Anwendbare Regeln

Die folgende Tabelle fasst das Verhalten von löschbaren Spalten und Standardwerten unter verschiedenen Konfigurationskombinationen zusammen. Diese Regeln bestimmen, wie Milvus Daten behandelt, wenn versucht wird, Nullwerte einzufügen oder wenn Feldwerte nicht bereitgestellt werden.

NullbarStandardwertStandardwert TypBenutzereingabeErgebnisBeispiel
Nicht-NullKeine/NullVerwendet den Standardwert
  • Feld: age
  • Standardwert: 18
  • Benutzereingabe: Null
  • Ergebnis: gespeichert als 18
-Keine/NullGespeichert als null
  • Feld:
  • middle_name
  • Standardwert:
  • -Benutzereingabe: null
  • Ergebnis: gespeichert als null
Nicht-NullKeine/NullVerwendet den Standardwert
  • Feld:
  • status
  • Standardwert:
  • "active"
  • Benutzereingabe: null
  • Ergebnis: gespeichert als "active"
-Keine/NullWirft einen Fehler
  • Feld:
  • email
  • Standardwert:
  • -Benutzereingabe: null
  • Ergebnis: Operation abgelehnt, System gibt einen Fehler aus
NullKeine/NullWirft einen Fehler
  • Feld:
  • username
  • Standardwert:
  • nullBenutzereingabe: null
  • Ergebnis: Operation abgelehnt, System gibt einen Fehler aus

Übersetzt vonDeepL

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

War diese Seite hilfreich?