milvus-logo
LFAI
Home
  • Benutzerhandbuch

Dynamisches Feld

Alle im Schema einer Sammlung definierten Felder müssen in den einzufügenden Entitäten enthalten sein. Wenn Sie möchten, dass einige Felder optional sind, sollten Sie das dynamische Feld aktivieren. In diesem Thema wird beschrieben, wie Sie das dynamische Feld aktivieren und verwenden können.

Übersicht

In Milvus können Sie ein Sammlungsschema erstellen, indem Sie die Namen und Datentypen für jedes Feld in der Sammlung festlegen. Wenn Sie ein Feld zum Schema hinzufügen, stellen Sie sicher, dass dieses Feld in der Entität enthalten ist, die Sie einfügen möchten. Wenn Sie möchten, dass einige Felder optional sind, ist die Aktivierung des dynamischen Feldes eine Möglichkeit.

Bei dem dynamischen Feld handelt es sich um ein reserviertes Feld mit der Bezeichnung $meta, das vom Typ JavaScript Object Notation (JSON) ist. Alle Felder in den Entitäten, die nicht im Schema definiert sind, werden in diesem reservierten JSON-Feld als Schlüssel-Wert-Paare gespeichert.

Bei einer Sammlung mit aktiviertem dynamischen Feld können Sie die Schlüssel im dynamischen Feld für die skalare Filterung verwenden, genau wie bei explizit im Schema definierten Feldern.

Aktivieren des dynamischen Felds

Bei Sammlungen, die mit der unter Sofortige Erstellung einer Sammlung beschriebenen Methode erstellt wurden, ist das dynamische Feld standardmäßig aktiviert. Sie können das dynamische Feld auch manuell aktivieren, wenn Sie eine Sammlung mit benutzerdefinierten Einstellungen erstellen.

from pymilvus import MilvusClient

client= MilvusClient(uri="http://localhost:19530")

client.create_collection(
    collection_name="my_dynamic_collection",
    dimension=5,
    # highlight-next-line
    enable_dynamic_field=True
)

import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.collection.request.CreateCollectionReq;

MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
        .uri("http://localhost:19530")
        .build());
        
CreateCollectionReq createCollectionReq = CreateCollectionReq.builder()
    .collectionName("my_dynamic_collection")
    .dimension(5)
    // highlight-next-line
    .enableDynamicField(true)
    .build()
client.createCollection(createCollectionReq);

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const client = new Client({
    address: 'http://localhost:19530'
});

await client.createCollection({
    collection_name: "customized_setup_2",
    schema: schema,
    // highlight-next-line
    enable_dynamic_field: true
});

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "my_dynamic_collection",
    "dimension": 5,
    "enableDynamicField": true
}'

Dynamisches Feld verwenden

Wenn das dynamische Feld in Ihrer Sammlung aktiviert ist, werden alle Felder und ihre Werte, die nicht im Schema definiert sind, als Schlüssel-Wert-Paare im dynamischen Feld gespeichert.

Angenommen, Ihr Auflistungsschema definiert nur zwei Felder mit den Namen id und vector, wobei das dynamische Feld aktiviert ist. Fügen Sie nun den folgenden Datensatz in diese Sammlung ein.

[
    {id: 0, vector: [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592], color: "pink_8682"},
    {id: 1, vector: [0.19886812562848388, 0.06023560599112088, 0.6976963061752597, 0.2614474506242501, 0.838729485096104], color: "red_7025"},
    {id: 2, vector: [0.43742130801983836, -0.5597502546264526, 0.6457887650909682, 0.7894058910881185, 0.20785793220625592], color: "orange_6781"},
    {id: 3, vector: [0.3172005263489739, 0.9719044792798428, -0.36981146090600725, -0.4860894583077995, 0.95791889146345], color: "pink_9298"},
    {id: 4, vector: [0.4452349528804562, -0.8757026943054742, 0.8220779437047674, 0.46406290649483184, 0.30337481143159106], color: "red_4794"},
    {id: 5, vector: [0.985825131989184, -0.8144651566660419, 0.6299267002202009, 0.1206906911183383, -0.1446277761879955], color: "yellow_4222"},
    {id: 6, vector: [0.8371977790571115, -0.015764369584852833, -0.31062937026679327, -0.562666951622192, -0.8984947637863987], color: "red_9392"},
    {id: 7, vector: [-0.33445148015177995, -0.2567135004164067, 0.8987539745369246, 0.9402995886420709, 0.5378064918413052], color: "grey_8510"},
    {id: 8, vector: [0.39524717779832685, 0.4000257286739164, -0.5890507376891594, -0.8650502298996872, -0.6140360785406336], color: "white_9381"},
    {id: 9, vector: [0.5718280481994695, 0.24070317428066512, -0.3737913482606834, -0.06726932177492717, -0.6980531615588608], color: "purple_4976"}        
]

Der obige Datensatz enthält 10 Entitäten, von denen jede die Felder id, vector und color enthält. Das Feld color ist hier nicht im Schema definiert. Da in der Sammlung das dynamische Feld aktiviert ist, wird das Feld color als Schlüssel-Wert-Paar im dynamischen Feld gespeichert.

Daten einfügen

Der folgende Code demonstriert, wie dieser Datensatz in die Sammlung eingefügt wird.

data=[
    {"id": 0, "vector": [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592], "color": "pink_8682"},
    {"id": 1, "vector": [0.19886812562848388, 0.06023560599112088, 0.6976963061752597, 0.2614474506242501, 0.838729485096104], "color": "red_7025"},
    {"id": 2, "vector": [0.43742130801983836, -0.5597502546264526, 0.6457887650909682, 0.7894058910881185, 0.20785793220625592], "color": "orange_6781"},
    {"id": 3, "vector": [0.3172005263489739, 0.9719044792798428, -0.36981146090600725, -0.4860894583077995, 0.95791889146345], "color": "pink_9298"},
    {"id": 4, "vector": [0.4452349528804562, -0.8757026943054742, 0.8220779437047674, 0.46406290649483184, 0.30337481143159106], "color": "red_4794"},
    {"id": 5, "vector": [0.985825131989184, -0.8144651566660419, 0.6299267002202009, 0.1206906911183383, -0.1446277761879955], "color": "yellow_4222"},
    {"id": 6, "vector": [0.8371977790571115, -0.015764369584852833, -0.31062937026679327, -0.562666951622192, -0.8984947637863987], "color": "red_9392"},
    {"id": 7, "vector": [-0.33445148015177995, -0.2567135004164067, 0.8987539745369246, 0.9402995886420709, 0.5378064918413052], "color": "grey_8510"},
    {"id": 8, "vector": [0.39524717779832685, 0.4000257286739164, -0.5890507376891594, -0.8650502298996872, -0.6140360785406336], "color": "white_9381"},
    {"id": 9, "vector": [0.5718280481994695, 0.24070317428066512, -0.3737913482606834, -0.06726932177492717, -0.6980531615588608], "color": "purple_4976"}
]

res = client.insert(
    collection_name="my_dynamic_collection",
    data=data
)

print(res)

# Output
# {'insert_count': 10, 'ids': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}

import com.google.gson.Gson;
import com.google.gson.JsonObject;

import io.milvus.v2.service.vector.request.InsertReq;
import io.milvus.v2.service.vector.response.InsertResp;
   
Gson gson = new Gson();
List<JsonObject> data = Arrays.asList(
        gson.fromJson("{\"id\": 0, \"vector\": [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592], \"color\": \"pink_8682\"}", JsonObject.class),
        gson.fromJson("{\"id\": 1, \"vector\": [0.19886812562848388, 0.06023560599112088, 0.6976963061752597, 0.2614474506242501, 0.838729485096104], \"color\": \"red_7025\"}", JsonObject.class),
        gson.fromJson("{\"id\": 2, \"vector\": [0.43742130801983836, -0.5597502546264526, 0.6457887650909682, 0.7894058910881185, 0.20785793220625592], \"color\": \"orange_6781\"}", JsonObject.class),
        gson.fromJson("{\"id\": 3, \"vector\": [0.3172005263489739, 0.9719044792798428, -0.36981146090600725, -0.4860894583077995, 0.95791889146345], \"color\": \"pink_9298\"}", JsonObject.class),
        gson.fromJson("{\"id\": 4, \"vector\": [0.4452349528804562, -0.8757026943054742, 0.8220779437047674, 0.46406290649483184, 0.30337481143159106], \"color\": \"red_4794\"}", JsonObject.class),
        gson.fromJson("{\"id\": 5, \"vector\": [0.985825131989184, -0.8144651566660419, 0.6299267002202009, 0.1206906911183383, -0.1446277761879955], \"color\": \"yellow_4222\"}", JsonObject.class),
        gson.fromJson("{\"id\": 6, \"vector\": [0.8371977790571115, -0.015764369584852833, -0.31062937026679327, -0.562666951622192, -0.8984947637863987], \"color\": \"red_9392\"}", JsonObject.class),
        gson.fromJson("{\"id\": 7, \"vector\": [-0.33445148015177995, -0.2567135004164067, 0.8987539745369246, 0.9402995886420709, 0.5378064918413052], \"color\": \"grey_8510\"}", JsonObject.class),
        gson.fromJson("{\"id\": 8, \"vector\": [0.39524717779832685, 0.4000257286739164, -0.5890507376891594, -0.8650502298996872, -0.6140360785406336], \"color\": \"white_9381\"}", JsonObject.class),
        gson.fromJson("{\"id\": 9, \"vector\": [0.5718280481994695, 0.24070317428066512, -0.3737913482606834, -0.06726932177492717, -0.6980531615588608], \"color\": \"purple_4976\"}", JsonObject.class)
);

InsertReq insertReq = InsertReq.builder()
        .collectionName("my_dynamic_collection")
        .data(data)
        .build();

InsertResp insertResp = client.insert(insertReq);
System.out.println(insertResp);

// Output:
//
// InsertResp(InsertCnt=10, primaryKeys=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

const { DataType } = require("@zilliz/milvus2-sdk-node")

// 3. Insert some data

var data = [
    {id: 0, vector: [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592], color: "pink_8682"},
    {id: 1, vector: [0.19886812562848388, 0.06023560599112088, 0.6976963061752597, 0.2614474506242501, 0.838729485096104], color: "red_7025"},
    {id: 2, vector: [0.43742130801983836, -0.5597502546264526, 0.6457887650909682, 0.7894058910881185, 0.20785793220625592], color: "orange_6781"},
    {id: 3, vector: [0.3172005263489739, 0.9719044792798428, -0.36981146090600725, -0.4860894583077995, 0.95791889146345], color: "pink_9298"},
    {id: 4, vector: [0.4452349528804562, -0.8757026943054742, 0.8220779437047674, 0.46406290649483184, 0.30337481143159106], color: "red_4794"},
    {id: 5, vector: [0.985825131989184, -0.8144651566660419, 0.6299267002202009, 0.1206906911183383, -0.1446277761879955], color: "yellow_4222"},
    {id: 6, vector: [0.8371977790571115, -0.015764369584852833, -0.31062937026679327, -0.562666951622192, -0.8984947637863987], color: "red_9392"},
    {id: 7, vector: [-0.33445148015177995, -0.2567135004164067, 0.8987539745369246, 0.9402995886420709, 0.5378064918413052], color: "grey_8510"},
    {id: 8, vector: [0.39524717779832685, 0.4000257286739164, -0.5890507376891594, -0.8650502298996872, -0.6140360785406336], color: "white_9381"},
    {id: 9, vector: [0.5718280481994695, 0.24070317428066512, -0.3737913482606834, -0.06726932177492717, -0.6980531615588608], color: "purple_4976"}        
]

var res = await client.insert({
    collection_name: "quick_setup",
    data: data,
})

console.log(res.insert_cnt)

// Output
// 
// 10
// 

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/insert" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "data": [
        {"id": 0, "vector": [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592], "color": "pink_8682"},
        {"id": 1, "vector": [0.19886812562848388, 0.06023560599112088, 0.6976963061752597, 0.2614474506242501, 0.838729485096104], "color": "red_7025"},
        {"id": 2, "vector": [0.43742130801983836, -0.5597502546264526, 0.6457887650909682, 0.7894058910881185, 0.20785793220625592], "color": "orange_6781"},
        {"id": 3, "vector": [0.3172005263489739, 0.9719044792798428, -0.36981146090600725, -0.4860894583077995, 0.95791889146345], "color": "pink_9298"},
        {"id": 4, "vector": [0.4452349528804562, -0.8757026943054742, 0.8220779437047674, 0.46406290649483184, 0.30337481143159106], "color": "red_4794"},
        {"id": 5, "vector": [0.985825131989184, -0.8144651566660419, 0.6299267002202009, 0.1206906911183383, -0.1446277761879955], "color": "yellow_4222"},
        {"id": 6, "vector": [0.8371977790571115, -0.015764369584852833, -0.31062937026679327, -0.562666951622192, -0.8984947637863987], "color": "red_9392"},
        {"id": 7, "vector": [-0.33445148015177995, -0.2567135004164067, 0.8987539745369246, 0.9402995886420709, 0.5378064918413052], "color": "grey_8510"},
        {"id": 8, "vector": [0.39524717779832685, 0.4000257286739164, -0.5890507376891594, -0.8650502298996872, -0.6140360785406336], "color": "white_9381"},
        {"id": 9, "vector": [0.5718280481994695, 0.24070317428066512, -0.3737913482606834, -0.06726932177492717, -0.6980531615588608], "color": "purple_4976"}        
    ],
    "collectionName": "my_dynamic_collection"
}'

# {
#     "code": 0,
#     "data": {
#         "insertCount": 10,
#         "insertIds": [
#             0,
#             1,
#             2,
#             3,
#             4,
#             5,
#             6,
#             7,
#             8,
#             9
#         ]
#     }
# }

Abfrage und Suche mit dynamischem Feld

Milvus unterstützt die Verwendung von Filterausdrücken bei Abfragen und Suchen, mit denen Sie angeben können, welche Felder in die Ergebnisse aufgenommen werden sollen. Das folgende Beispiel zeigt, wie Abfragen und Suchen mit dem Feld color, das nicht im Schema definiert ist, unter Verwendung des dynamischen Feldes durchgeführt werden können.

query_vector = [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592]

res = client.search(
    collection_name="my_dynamic_collection",
    data=[query_vector],
    limit=5,
    # highlight-start
    filter='color like "red%"',
    output_fields=["color"]
    # highlight-end
)

print(res)

# Output
# data: ["[{'id': 1, 'distance': 0.6290165185928345, 'entity': {'color': 'red_7025'}}, {'id': 4, 'distance': 0.5975797176361084, 'entity': {'color': 'red_4794'}}, {'id': 6, 'distance': -0.24996188282966614, 'entity': {'color': 'red_9392'}}]"] 


import io.milvus.v2.service.vector.request.SearchReq
import io.milvus.v2.service.vector.request.data.FloatVec;
import io.milvus.v2.service.vector.response.SearchResp

FloatVec queryVector = new FloatVec(new float[]{0.3580376395471989f, -0.6023495712049978f, 0.18414012509913835f, -0.26286205330961354f, 0.9029438446296592f});
SearchResp resp = client.search(SearchReq.builder()
        .collectionName("my_dynamic_collection")
        .annsField("vector")
        .data(Collections.singletonList(queryVector))
        .outputFields(Collections.singletonList("color"))
        .filter("color like \"red%\"")
        .topK(5)
        .consistencyLevel(ConsistencyLevel.STRONG)
        .build());

System.out.println(resp.getSearchResults());

// Output
//
// [[SearchResp.SearchResult(entity={color=red_7025}, score=0.6290165, id=1), SearchResp.SearchResult(entity={color=red_4794}, score=0.5975797, id=4), SearchResp.SearchResult(entity={color=red_9392}, score=-0.24996188, id=6)]]


const query_vector = [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592]

res = await client.search({
    collection_name: "quick_setup",
    data: [query_vector],
    limit: 5,
    // highlight-start
    filters: "color like \"red%\"",
    output_fields: ["color"]
    // highlight-end
})

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "my_dynamic_collection",
    "data": [
        [0.3580376395471989, -0.6023495712049978, 0.18414012509913835, -0.26286205330961354, 0.9029438446296592]
    ],
    "annsField": "vector",
    "filter": "color like \"red%\"",
    "limit": 3,
    "outputFields": ["color"]
}'
# {"code":0,"cost":0,"data":[{"color":"red_7025","distance":0.6290165,"id":1},{"color":"red_4794","distance":0.5975797,"id":4},{"color":"red_9392","distance":-0.24996185,"id":6}]}

In dem im obigen Codebeispiel verwendeten Filterausdruck color like "red%" and likes > 50 legen die Bedingungen fest, dass der Wert des Feldes color mit "rot" beginnen muss . In den Beispieldaten erfüllen nur zwei Entitäten diese Bedingung. Wenn also limit (topK) auf 3 oder weniger gesetzt wird, werden diese beiden Entitäten zurückgegeben.

[
    {
        "id": 4, 
        "distance": 0.3345786594834839,
        "entity": {
            "vector": [0.4452349528804562, -0.8757026943054742, 0.8220779437047674, 0.46406290649483184, 0.30337481143159106], 
            "color": "red_4794", 
            "likes": 122
        }
    },
    {
        "id": 6, 
        "distance": 0.6638239834383389"entity": {
            "vector": [0.8371977790571115, -0.015764369584852833, -0.31062937026679327, -0.562666951622192, -0.8984947637863987], 
            "color": "red_9392", 
            "likes": 58
        }
    },
]

Übersetzt vonDeepLogo

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

War diese Seite hilfreich?