🚀 Try Zilliz Cloud, the fully managed Milvus, for free—experience 10x faster performance! Try Now>>

Milvus
Zilliz
Home
  • User Guide
  • Home
  • Docs
  • User Guide

  • Schema & Data Fields

  • Analyzer

  • Built-in Analyzers

  • Chinese

Chinese

The chinese analyzer is designed specifically to handle Chinese text, providing effective segmentation and tokenization.

Definition

The chinese analyzer consists of:

  • Tokenizer: Uses the jieba tokenizer to segment Chinese text into tokens based on vocabulary and context. For more information, refer to Jieba.

  • Filter: Uses the cnalphanumonly filter to remove tokens that contain any non-Chinese characters. For more information, refer to Cnalphanumonly.

The functionality of the chinese analyzer is equivalent to the following custom analyzer configuration:

analyzer_params = {
    "tokenizer": "jieba",
    "filter": ["cnalphanumonly"]
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer", "jieba");
analyzerParams.put("filter", Collections.singletonList("cnalphanumonly"));
const analyzer_params = {
    "tokenizer": "jieba",
    "filter": ["cnalphanumonly"]
};
analyzerParams = map[string]any{"tokenizer": "jieba", "filter": []any{"cnalphanumonly"}}
# restful
analyzerParams='{
  "tokenizer": "jieba",
  "filter": [
    "cnalphanumonly"
  ]
}'

Configuration

To apply the chinese analyzer to a field, simply set type to chinese in analyzer_params.

analyzer_params = {
    "type": "chinese",
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("type", "chinese");
const analyzer_params = {
    "type": "chinese",
}
analyzerParams = map[string]any{"type": "chinese"}
# restful
analyzerParams='{
  "type": "chinese"
}'

The chinese analyzer does not accept any optional parameters.

Examples

Before applying the analyzer configuration to your collection schema, verify its behavior using the run_analyzer method.

Analyzer configuration

analyzer_params = {
    "type": "chinese",
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("type", "chinese");
// javascript
analyzerParams = map[string]any{"type": "chinese"}
# restful

Verification using run_analyzer

from pymilvus import (
    MilvusClient,
)

client = MilvusClient(uri="http://localhost:19530")

# Sample text to analyze
sample_text = "Milvus 是一个高性能、可扩展的向量数据库!"

# Run the standard analyzer with the defined configuration
result = client.run_analyzer(sample_text, analyzer_params)
print("English analyzer output:", result)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.vector.request.RunAnalyzerReq;
import io.milvus.v2.service.vector.response.RunAnalyzerResp;

ConnectConfig config = ConnectConfig.builder()
        .uri("http://localhost:19530")
        .build();
MilvusClientV2 client = new MilvusClientV2(config);

List<String> texts = new ArrayList<>();
texts.add("Milvus 是一个高性能、可扩展的向量数据库!");

RunAnalyzerResp resp = client.runAnalyzer(RunAnalyzerReq.builder()
        .texts(texts)
        .analyzerParams(analyzerParams)
        .build());
List<RunAnalyzerResp.AnalyzerResult> results = resp.getResults();
// javascript
// go
# restful

Expected output

Chinese analyzer output: ['Milvus', '是', '一个', '高性', '性能', '高性能', '可', '扩展', '的', '向量', '数据', '据库', '数据库']
Table of contents

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

Was this page helpful?