字串欄位
在 Milvus 中,VARCHAR
是用來儲存字串類型資料的資料類型,適合儲存長度可變的字串。它可以儲存單字節和多字節字元的字串,最大長度可達 65,535 個字元。定義VARCHAR
欄位時,必須同時指定最大長度參數max_length
。VARCHAR
字串類型提供了一種有效且靈活的方式來儲存和管理文字資料,非常適合處理不同長度字串的應用程式。
新增 VARCHAR 欄位
要在 Milvus 中使用字串資料,請在建立集合時定義VARCHAR
欄位。這個過程包括
將
datatype
設定為支援的字串資料類型,即VARCHAR
。使用
max_length
參數指定字串類型的最大長度,不能超過 60,535 個字元。
from pymilvus import MilvusClient, DataType
client = MilvusClient(uri="http://localhost:19530")
# define schema
schema = client.create_schema(
auto_id=False,
enable_dynamic_fields=True,
)
schema.add_field(field_name="varchar_field1", datatype=DataType.VARCHAR, max_length=100)
schema.add_field(field_name="varchar_field2", datatype=DataType.VARCHAR, max_length=200)
schema.add_field(field_name="pk", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="embedding", datatype=DataType.FLOAT_VECTOR, dim=3)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.common.DataType;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;
MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
.uri("http://localhost:19530")
.build());
CreateCollectionReq.CollectionSchema schema = client.createSchema();
schema.setEnableDynamicField(true);
schema.addField(AddFieldReq.builder()
.fieldName("varchar_field1")
.dataType(DataType.VarChar)
.maxLength(100)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("varchar_field2")
.dataType(DataType.VarChar)
.maxLength(200)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("pk")
.dataType(DataType.Int64)
.isPrimaryKey(true)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("embedding")
.dataType(DataType.FloatVector)
.dimension(3)
.build());
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const schema = [
{
name: "metadata",
data_type: DataType.JSON,
},
{
name: "pk",
data_type: DataType.Int64,
is_primary_key: true,
},
{
name: "varchar_field2",
data_type: DataType.VarChar,
max_length: 200,
},
{
name: "varchar_field1",
data_type: DataType.VarChar,
max_length: 100,
},
];
export varcharField1='{
"fieldName": "varchar_field1",
"dataType": "VarChar",
"elementTypeParams": {
"max_length": 100
}
}'
export varcharField2='{
"fieldName": "varchar_field2",
"dataType": "VarChar",
"elementTypeParams": {
"max_length": 200
}
}'
export primaryField='{
"fieldName": "pk",
"dataType": "Int64",
"isPrimary": true
}'
export vectorField='{
"fieldName": "embedding",
"dataType": "FloatVector",
"elementTypeParams": {
"dim": 3
}
}'
export schema="{
\"autoID\": false,
\"fields\": [
$varcharField1,
$varcharField2,
$primaryField,
$vectorField
]
}"
在本範例中,我們新增兩個VARCHAR
欄位:varchar_field1
和varchar_field2
,最大長度分別設定為 100 和 200 個字元。建議根據您的資料特性設定max_length
,以確保它能容納最長的資料,同時避免過多的空間分配。此外,我們新增了一個主要欄位pk
和一個向量欄位embedding
。
當您建立一個集合時,主欄位和向量欄位是必須的。Primary 欄位唯一識別每個實體,而向量欄位對相似性搜尋至關重要。如需詳細資訊,請參閱Primary Field & AutoID、Dense Vector、Binary Vector 或Sparse Vector。
設定索引參數
為VARCHAR
欄位設定索引參數是可選的,但可以大幅提高檢索效率。
在下面的範例中,我們為varchar_field1
建立AUTOINDEX
,意思是 Milvus 會根據資料類型自動建立適當的索引。如需詳細資訊,請參閱AUTOINDEX。
index_params = client.prepare_index_params()
index_params.add_index(
field_name="varchar_field1",
index_type="AUTOINDEX",
index_name="varchar_index"
)
import io.milvus.v2.common.IndexParam;
import java.util.*;
List<IndexParam> indexes = new ArrayList<>();
indexes.add(IndexParam.builder()
.fieldName("varchar_field1")
.indexName("varchar_index")
.indexType(IndexParam.IndexType.AUTOINDEX)
.build());
const indexParams = [{
index_name: 'varchar_index',
field_name: 'varchar_field1',
index_type: IndexType.AUTOINDEX,
)];
export indexParams='[
{
"fieldName": "varchar_field1",
"indexName": "varchar_index",
"indexType": "AUTOINDEX"
}
]'
除了AUTOINDEX
之外,您還可以指定其他標量索引類型,例如INVERTED
或BITMAP
。有關支援的索引類型,請參閱標量索引。
此外,在建立集合之前,您必須為向量欄位建立索引。在本範例中,我們使用AUTOINDEX
來簡化向量索引的設定。
# Add vector index
index_params.add_index(
field_name="embedding",
index_type="AUTOINDEX", # Use automatic indexing to simplify complex index settings
metric_type="COSINE" # Specify similarity metric type, options include L2, COSINE, or IP
)
indexes.add(IndexParam.builder()
.fieldName("embedding")
.indexType(IndexParam.IndexType.AUTOINDEX)
.metricType(IndexParam.MetricType.COSINE)
.build());
indexParams.push({
index_name: 'embedding_index',
field_name: 'embedding',
metric_type: MetricType.COSINE,
index_type: IndexType.AUTOINDEX,
});
export indexParams='[
{
"fieldName": "varchar_field1",
"indexName": "varchar_index",
"indexType": "AUTOINDEX"
},
{
"fieldName": "embedding",
"metricType": "COSINE",
"indexType": "AUTOINDEX"
}
]'
建立集合
定義模式和索引後,您就可以建立包含字串欄位的集合。
# Create Collection
client.create_collection(
collection_name="your_collection_name",
schema=schema,
index_params=index_params
)
CreateCollectionReq requestCreate = CreateCollectionReq.builder()
.collectionName("my_varchar_collection")
.collectionSchema(schema)
.indexParams(indexes)
.build();
client.createCollection(requestCreate);
client.create_collection({
collection_name: "my_varchar_collection",
schema: schema,
index_params: index_params
})
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
\"collectionName\": \"my_varchar_collection\",
\"schema\": $schema,
\"indexParams\": $indexParams
}"
## {"code":0,"data":{}}
插入資料
建立資料集後,您可以插入包含字串欄位的資料。
data = [
{"varchar_field1": "Product A", "varchar_field2": "High quality product", "pk": 1, "embedding": [0.1, 0.2, 0.3]},
{"varchar_field1": "Product B", "varchar_field2": "Affordable price", "pk": 2, "embedding": [0.4, 0.5, 0.6]},
{"varchar_field1": "Product C", "varchar_field2": "Best seller", "pk": 3, "embedding": [0.7, 0.8, 0.9]},
]
client.insert(
collection_name="my_varchar_collection",
data=data
)
import com.google.gson.Gson;
import com.google.gson.JsonObject;
import io.milvus.v2.service.vector.request.InsertReq;
import io.milvus.v2.service.vector.response.InsertResp;
List<JsonObject> rows = new ArrayList<>();
Gson gson = new Gson();
rows.add(gson.fromJson("{\"varchar_field1\": \"Product A\", \"varchar_field2\": \"High quality product\", \"pk\": 1, \"embedding\": [0.1, 0.2, 0.3]}", JsonObject.class));
rows.add(gson.fromJson("{\"varchar_field1\": \"Product B\", \"varchar_field2\": \"Affordable price\", \"pk\": 2, \"embedding\": [0.4, 0.5, 0.6]}", JsonObject.class));
rows.add(gson.fromJson("{\"varchar_field1\": \"Product C\", \"varchar_field2\": \"Best seller\", \"pk\": 3, \"embedding\": [0.7, 0.8, 0.9]}", JsonObject.class));
InsertResp insertR = client.insert(InsertReq.builder()
.collectionName("my_varchar_collection")
.data(rows)
.build());
const data = [
{
varchar_field1: "Product A",
varchar_field2: "High quality product",
pk: 1,
embedding: [0.1, 0.2, 0.3],
},
{
varchar_field1: "Product B",
varchar_field2: "Affordable price",
pk: 2,
embedding: [0.4, 0.5, 0.6],
},
{
varchar_field1: "Product C",
varchar_field2: "Best seller",
pk: 3,
embedding: [0.7, 0.8, 0.9],
},
];
client.insert({
collection_name: "my_sparse_collection",
data: data,
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/insert" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"data": [
{"varchar_field1": "Product A", "varchar_field2": "High quality product", "pk": 1, "embedding": [0.1, 0.2, 0.3]},
{"varchar_field1": "Product B", "varchar_field2": "Affordable price", "pk": 2, "embedding": [0.4, 0.5, 0.6]},
{"varchar_field1": "Product C", "varchar_field2": "Best seller", "pk": 3, "embedding": [0.7, 0.8, 0.9]}
],
"collectionName": "my_varchar_collection"
}'
## {"code":0,"cost":0,"data":{"insertCount":3,"insertIds":[1,2,3]}}
在這個範例中,我們插入的資料包含VARCHAR
欄位 (varchar_field1
和varchar_field2
)、主欄位 (pk
) 和向量表示 (embedding
)。為確保插入的資料與模式中定義的欄位相符,建議事先檢查資料類型,以避免插入錯誤。
如果您在定義模式時設定enable_dynamic_fields=True
,Milvus 允許您插入未事先定義的字串欄位。但是,請記住這可能會增加查詢和管理的複雜性,有可能影響性能。如需詳細資訊,請參閱動態欄位。
搜尋和查詢
新增字串欄位後,您可以在搜尋和查詢操作中使用它們進行篩選,達到更精確的搜尋結果。
篩選查詢
新增字串欄位後,您可以在查詢中使用這些欄位篩選結果。例如,您可以查詢varchar_field1
等於"Product A"
的所有實體。
filter = 'varchar_field1 == "Product A"'
res = client.query(
collection_name="my_varchar_collection",
filter=filter,
output_fields=["varchar_field1", "varchar_field2"]
)
print(res)
# Output
# data: ["{'varchar_field1': 'Product A', 'varchar_field2': 'High quality product', 'pk': 1}"]
import io.milvus.v2.service.vector.request.QueryReq;
import io.milvus.v2.service.vector.response.QueryResp;
String filter = "varchar_field1 == \"Product A\"";
QueryResp resp = client.query(QueryReq.builder()
.collectionName("my_varchar_collection")
.filter(filter)
.outputFields(Arrays.asList("varchar_field1", "varchar_field2"))
.build());
System.out.println(resp.getQueryResults());
// Output
//
// [QueryResp.QueryResult(entity={varchar_field1=Product A, varchar_field2=High quality product, pk=1})]
client.query({
collection_name: 'my_varchar_collection',
filter: 'varchar_field1 == "Product A"',
output_fields: ['varchar_field1', 'varchar_field2']
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "my_varchar_collection",
"filter": "varchar_field1 == \"Product A\"",
"outputFields": ["varchar_field1", "varchar_field2"]
}'
## {"code":0,"cost":0,"data":[{"pk":1,"varchar_field1":"Product A","varchar_field2":"High quality product"}]}
這個查詢表達式會返回所有符合條件的實體,並輸出它們的varchar_field1
和varchar_field2
欄位。有關過濾查詢的詳細資訊,請參閱元資料過濾。
使用字串篩選的向量搜尋
除了基本的標量字段篩選外,您還可以結合向量相似性搜尋與標量字段篩選。例如,以下程式碼顯示如何在向量搜尋中加入標量欄位篩選器。
filter = 'varchar_field1 == "Product A"'
res = client.search(
collection_name="my_varchar_collection",
data=[[0.3, -0.6, 0.1]],
limit=5,
search_params={"params": {"nprobe": 10}},
output_fields=["varchar_field1", "varchar_field2"],
filter=filter
)
print(res)
# Output
# data: ["[{'id': 1, 'distance': -0.06000000238418579, 'entity': {'varchar_field1': 'Product A', 'varchar_field2': 'High quality product'}}]"]
import io.milvus.v2.service.vector.request.SearchReq;
import io.milvus.v2.service.vector.response.SearchResp;
String filter = "varchar_field1 == \"Product A\"";
SearchResp resp = client.search(SearchReq.builder()
.collectionName("my_varchar_collection")
.annsField("embedding")
.data(Collections.singletonList(new FloatVec(new float[]{0.3f, -0.6f, 0.1f})))
.topK(5)
.outputFields(Arrays.asList("varchar_field1", "varchar_field2"))
.filter(filter)
.build());
System.out.println(resp.getSearchResults());
// Output
//
// [[SearchResp.SearchResult(entity={varchar_field1=Product A, varchar_field2=High quality product}, score=-0.2364331, id=1)]]
client.search({
collection_name: 'my_varchar_collection',
data: [0.3, -0.6, 0.1],
limit: 5,
output_fields: ['varchar_field1', 'varchar_field2'],
filter: 'varchar_field1 == "Product A"'
params: {
nprobe:10
}
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "my_varchar_collection",
"data": [
[0.3, -0.6, 0.1]
],
"limit": 5,
"searchParams":{
"params":{"nprobe":10}
},
"outputFields": ["varchar_field1", "varchar_field2"],
"filter": "varchar_field1 == \"Product A\""
}'
## {"code":0,"cost":0,"data":[{"distance":-0.2364331,"id":1,"varchar_field1":"Product A","varchar_field2":"High quality product"}]}
在這個範例中,我們首先定義一個查詢向量,並在搜尋過程中加入篩選條件varchar_field1 == "Product A"
。這可確保搜尋結果不僅與查詢向量相似,也符合指定的字串篩選條件。如需詳細資訊,請參閱Metadata 過濾。