🚀 免費嘗試 Zilliz Cloud,完全托管的 Milvus,體驗速度提升 10 倍!立即嘗試

milvus-logo
LFAI
主頁
  • 整合

使用 Milvus 和 Firecrawl 建立 RAG

Open In Colab GitHub Repository

Firecrawl可讓開發人員利用從任何網站刮取的乾淨資料建立 AI 應用程式。Firecrawl 具備先進的搜刮、爬取和資料萃取功能,可簡化將網站內容轉換為乾淨 markdown 或結構化資料的流程,以利下游的 AI 工作流程。

在本教學中,我們將教您如何使用 Milvus 和 Firecrawl 建立檢索-增強世代 (Retrieval-Augmented Generation, RAG) 管道。此管道整合了 Firecrawl (用於網路資料搜刮)、Milvus (用於向量儲存),以及 OpenAI (用於產生有洞察力的情境感知回應)。

準備工作

相依性與環境

若要開始使用,請執行下列指令來安裝所需的相依性:

$ pip install firecrawl-py pymilvus openai requests tqdm

如果您使用的是 Google Colab,為了啟用剛安裝的相依性,您可能需要重新啟動執行時(按一下螢幕上方的「Runtime」功能表,並從下拉式功能表中選擇「Restart session」)。

設定 API 金鑰

要使用 Firecrawl 從指定的 URL 搜刮資料,您需要取得FIRECRAWL_API_KEY,並將其設定為環境變數。此外,在本範例中,我們會使用 OpenAI 作為 LLM。您也應該準備OPENAI_API_KEY作為環境變數。

import os

os.environ["FIRECRAWL_API_KEY"] = "fc-***********"
os.environ["OPENAI_API_KEY"] = "sk-***********"

準備 LLM 和嵌入模型

我們初始化 OpenAI 用戶端以準備嵌入模型。

from openai import OpenAI

openai_client = OpenAI()

定義使用 OpenAI client 產生文字嵌入的函式。我們使用text-embedding-3-small模型作為範例。

def emb_text(text):
    return (
        openai_client.embeddings.create(input=text, model="text-embedding-3-small")
        .data[0]
        .embedding
    )

產生測試嵌入,並列印其尺寸和前幾個元素。

test_embedding = emb_text("This is a test")
embedding_dim = len(test_embedding)
print(embedding_dim)
print(test_embedding[:10])
1536
[0.009889289736747742, -0.005578675772994757, 0.00683477520942688, -0.03805781528353691, -0.01824733428657055, -0.04121600463986397, -0.007636285852640867, 0.03225184231996536, 0.018949154764413834, 9.352207416668534e-05]

使用 Firecrawl 搜刮資料

初始化 Firecrawl 應用程式

我們將使用firecrawl 函式庫以 markdown 格式從指定的 URL 搜刮資料。首先初始化 Firecrawl 應用程式:

from firecrawl import FirecrawlApp

app = FirecrawlApp(api_key=os.environ["FIRECRAWL_API_KEY"])

抓取目標網站

從目標 URL 搜刮內容。網站LLM-powered Autonomous Agents深入探討使用大型語言模型 (LLM) 建立的自治代理系統。我們將使用這些內容建立 RAG 系統。

# Scrape a website:
scrape_status = app.scrape_url(
    "https://lilianweng.github.io/posts/2023-06-23-agent/",
    params={"formats": ["markdown"]},
)

markdown_content = scrape_status["markdown"]

處理 Scraped 內容

為了讓 Scraped 內容可以管理,以便插入 Milvus,我們簡單地使用「#」來分隔內容,這可以大致分隔 Scraped Markdown 檔案中每個主要部分的內容。

def split_markdown_content(content):
    return [section.strip() for section in content.split("# ") if section.strip()]


# Process the scraped markdown content
sections = split_markdown_content(markdown_content)

# Print the first few sections to understand the structure
for i, section in enumerate(sections[:3]):
    print(f"Section {i+1}:")
    print(section[:300] + "...")
    print("-" * 50)
Section 1:
Table of Contents

- [Agent System Overview](#agent-system-overview)
- [Component One: Planning](#component-one-planning)  - [Task Decomposition](#task-decomposition)
  - [Self-Reflection](#self-reflection)
- [Component Two: Memory](#component-two-memory)  - [Types of Memory](#types-of-memory)
  - [...
--------------------------------------------------
Section 2:
Agent System Overview [\#](\#agent-system-overview)

In a LLM-powered autonomous agent system, LLM functions as the agent’s brain, complemented by several key components:

- **Planning**
  - Subgoal and decomposition: The agent breaks down large tasks into smaller, manageable subgoals, enabling effi...
--------------------------------------------------
Section 3:
Component One: Planning [\#](\#component-one-planning)

A complicated task usually involves many steps. An agent needs to know what they are and plan ahead.

#...
--------------------------------------------------

將資料載入 Milvus

建立集合

from pymilvus import MilvusClient

milvus_client = MilvusClient(uri="./milvus_demo.db")
collection_name = "my_rag_collection"

至於MilvusClient 的參數:

  • uri 設定為本機檔案,例如./milvus.db ,是最方便的方法,因為它會自動利用Milvus Lite將所有資料儲存在這個檔案中。

  • 如果您有大規模的資料,您可以在docker 或 kubernetes 上架設效能更高的 Milvus 伺服器。在此設定中,請使用伺服器的 uri,例如http://localhost:19530 ,作為您的uri

  • 如果您想使用Zilliz Cloud(Milvus 的完全管理雲端服務),請調整uritoken ,與 Zilliz Cloud 中的Public Endpoint 和 Api key對應。

檢查集合是否已經存在,如果已經存在,請將其刪除。

if milvus_client.has_collection(collection_name):
    milvus_client.drop_collection(collection_name)

使用指定的參數建立新的集合。

如果我們沒有指定任何欄位資訊,Milvus 會自動建立一個預設的id 欄位做為主索引鍵,以及一個vector 欄位來儲存向量資料。保留的 JSON 欄位用來儲存非結構描述定義的欄位及其值。

milvus_client.create_collection(
    collection_name=collection_name,
    dimension=embedding_dim,
    metric_type="IP",  # Inner product distance
    consistency_level="Strong",  # Strong consistency level
)

插入資料

from tqdm import tqdm

data = []

for i, section in enumerate(tqdm(sections, desc="Processing sections")):
    embedding = emb_text(section)
    data.append({"id": i, "vector": embedding, "text": section})

# Insert data into Milvus
milvus_client.insert(collection_name=collection_name, data=data)
Processing sections: 100%|██████████| 17/17 [00:08<00:00,  2.09it/s]





{'insert_count': 17, 'ids': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], 'cost': 0}

建立 RAG

為查詢擷取資料

讓我們指定一個關於我們剛剛搜刮的網站的查詢問題。

question = "What are the main components of autonomous agents?"

在集合中搜尋該問題,並擷取符合語意的前三名。

search_res = milvus_client.search(
    collection_name=collection_name,
    data=[emb_text(question)],
    limit=3,
    search_params={"metric_type": "IP", "params": {}},
    output_fields=["text"],
)

讓我們來看看查詢的搜尋結果

import json

retrieved_lines_with_distances = [
    (res["entity"]["text"], res["distance"]) for res in search_res[0]
]
print(json.dumps(retrieved_lines_with_distances, indent=4))
[
    [
        "Agent System Overview [\\#](\\#agent-system-overview)\n\nIn a LLM-powered autonomous agent system, LLM functions as the agent\u2019s brain, complemented by several key components:\n\n- **Planning**\n  - Subgoal and decomposition: The agent breaks down large tasks into smaller, manageable subgoals, enabling efficient handling of complex tasks.\n  - Reflection and refinement: The agent can do self-criticism and self-reflection over past actions, learn from mistakes and refine them for future steps, thereby improving the quality of final results.\n- **Memory**\n  - Short-term memory: I would consider all the in-context learning (See [Prompt Engineering](https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/)) as utilizing short-term memory of the model to learn.\n  - Long-term memory: This provides the agent with the capability to retain and recall (infinite) information over extended periods, often by leveraging an external vector store and fast retrieval.\n- **Tool use**\n  - The agent learns to call external APIs for extra information that is missing from the model weights (often hard to change after pre-training), including current information, code execution capability, access to proprietary information sources and more.\n\n![](agent-overview.png)Fig. 1. Overview of a LLM-powered autonomous agent system.",
        0.6343474388122559
    ],
    [
        "Table of Contents\n\n- [Agent System Overview](#agent-system-overview)\n- [Component One: Planning](#component-one-planning)  - [Task Decomposition](#task-decomposition)\n  - [Self-Reflection](#self-reflection)\n- [Component Two: Memory](#component-two-memory)  - [Types of Memory](#types-of-memory)\n  - [Maximum Inner Product Search (MIPS)](#maximum-inner-product-search-mips)\n- [Component Three: Tool Use](#component-three-tool-use)\n- [Case Studies](#case-studies)  - [Scientific Discovery Agent](#scientific-discovery-agent)\n  - [Generative Agents Simulation](#generative-agents-simulation)\n  - [Proof-of-Concept Examples](#proof-of-concept-examples)\n- [Challenges](#challenges)\n- [Citation](#citation)\n- [References](#references)\n\nBuilding agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as [AutoGPT](https://github.com/Significant-Gravitas/Auto-GPT), [GPT-Engineer](https://github.com/AntonOsika/gpt-engineer) and [BabyAGI](https://github.com/yoheinakajima/babyagi), serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.",
        0.5715497732162476
    ],
    [
        "Challenges [\\#](\\#challenges)\n\nAfter going through key ideas and demos of building LLM-centered agents, I start to see a couple common limitations:\n\n- **Finite context length**: The restricted context capacity limits the inclusion of historical information, detailed instructions, API call context, and responses. The design of the system has to work with this limited communication bandwidth, while mechanisms like self-reflection to learn from past mistakes would benefit a lot from long or infinite context windows. Although vector stores and retrieval can provide access to a larger knowledge pool, their representation power is not as powerful as full attention.\n\n- **Challenges in long-term planning and task decomposition**: Planning over a lengthy history and effectively exploring the solution space remain challenging. LLMs struggle to adjust plans when faced with unexpected errors, making them less robust compared to humans who learn from trial and error.\n\n- **Reliability of natural language interface**: Current agent system relies on natural language as an interface between LLMs and external components such as memory and tools. However, the reliability of model outputs is questionable, as LLMs may make formatting errors and occasionally exhibit rebellious behavior (e.g. refuse to follow an instruction). Consequently, much of the agent demo code focuses on parsing model output.",
        0.5009307265281677
    ]
]

使用 LLM 取得 RAG 回應

將擷取的文件轉換成字串格式。

context = "\n".join(
    [line_with_distance[0] for line_with_distance in retrieved_lines_with_distances]
)

定義 Lanage Model 的系統和使用者提示。此提示與從 Milvus 擷取的文件組合。

SYSTEM_PROMPT = """
Human: You are an AI assistant. You are able to find answers to the questions from the contextual passage snippets provided.
"""
USER_PROMPT = f"""
Use the following pieces of information enclosed in <context> tags to provide an answer to the question enclosed in <question> tags.
<context>
{context}
</context>
<question>
{question}
</question>
"""

使用 OpenAI ChatGPT 根據提示產生回應。

response = openai_client.chat.completions.create(
    model="gpt-4o",
    messages=[
        {"role": "system", "content": SYSTEM_PROMPT},
        {"role": "user", "content": USER_PROMPT},
    ],
)
print(response.choices[0].message.content)
The main components of a LLM-powered autonomous agent system are the Planning, Memory, and Tool use. 

1. Planning: The agent breaks down large tasks into smaller, manageable subgoals, and can self-reflect and learn from past mistakes, refining its actions for future steps.

2. Memory: This includes short-term memory, which the model uses for in-context learning, and long-term memory, which allows the agent to retain and recall information over extended periods. 

3. Tool use: This component allows the agent to call external APIs for additional information that is not available in the model weights, like current information, code execution capacity, and access to proprietary information sources.

免費嘗試托管的 Milvus

Zilliz Cloud 無縫接入,由 Milvus 提供動力,速度提升 10 倍。

開始使用
反饋

這個頁面有幫助嗎?