milvus-logo
LFAI
Home
  • Integrations

Build Retrieval Augmented Generative System with Milvus and Haystack

Haystack is an open source LLM framework in Python by deepset for building customizable, production-ready LLM applications. It is an end-to-end framework that assists the orchestration of complete NLP applications by providing tooling for each step of the application-building life cycle.

This guide demonstrates how to build an LLM-driven question-answering application on the Milvus documentation with the Milvus integration of Haystack. In this example, Haystack and Milvus work together first to ingest documentation pages and store them in a MilvusDocumentStore, and then to use OpenAIGenerator to answer questions using retrieval-augmentation.

🚀 See the full application that uses the MilvusDocumentStore to do Milvus documentation QA here.

Installation

Install Haystack and the Milvus integration:

pip install milvus-haystack

Usage

First, start a Milvus service following the 'Start Milvus' instructions in the documentation.

Once you have Milvus running locally on localhost:19530, you can start using Milvus with Haystack by initializing a MilvusDocumentStore:

Create the indexing Pipeline and index some documents

import os

from haystack import Pipeline
from haystack.components.converters import MarkdownToDocument
from haystack.components.embedders import SentenceTransformersDocumentEmbedder, SentenceTransformersTextEmbedder
from haystack.components.preprocessors import DocumentSplitter
from haystack.components.writers import DocumentWriter

from milvus_haystack import MilvusDocumentStore
from milvus_haystack.milvus_embedding_retriever import MilvusEmbeddingRetriever

file_paths = [os.path.abspath(__file__)]  # Your knowledge documents here

document_store = MilvusDocumentStore(
    connection_args={
        "host": "localhost",
        "port": "19530",
        "user": "",
        "password": "",
        "secure": False,
    },
    drop_old=True,
)
indexing_pipeline = Pipeline()
indexing_pipeline.add_component("converter", MarkdownToDocument())
indexing_pipeline.add_component("splitter", DocumentSplitter(split_by="sentence", split_length=2))
indexing_pipeline.add_component("embedder", SentenceTransformersDocumentEmbedder())
indexing_pipeline.add_component("writer", DocumentWriter(document_store))
indexing_pipeline.connect("converter", "splitter")
indexing_pipeline.connect("splitter", "embedder")
indexing_pipeline.connect("embedder", "writer")
indexing_pipeline.run({"converter": {"sources": file_paths}})

print("Number of documents:", document_store.count_documents())

Create the retrieval pipeline and try a query

question = "How to install Haystack and the Milvus integration?"

retrieval_pipeline = Pipeline()
retrieval_pipeline.add_component("embedder", SentenceTransformersTextEmbedder())
retrieval_pipeline.add_component("retriever", MilvusEmbeddingRetriever(document_store=document_store, top_k=3))
retrieval_pipeline.connect("embedder", "retriever")

retrieval_results = retrieval_pipeline.run({"embedder": {"text": question}})

for doc in retrieval_results["retriever"]["documents"]:
    print(doc.content)
    print("-" * 10)

Create the RAG pipeline and try a query

from haystack.utils import Secret
from haystack.components.embedders import SentenceTransformersTextEmbedder
from haystack.components.builders import PromptBuilder
from haystack.components.generators import OpenAIGenerator

prompt_template = """Answer the following query based on the provided context. If the context does
                     not include an answer, reply with 'I don't know'.\n
                     Query: {{query}}
                     Documents:
                     {% for doc in documents %}
                        {{ doc.content }}
                     {% endfor %}
                     Answer: 
                  """

rag_pipeline = Pipeline()
rag_pipeline.add_component("text_embedder", SentenceTransformersTextEmbedder())
rag_pipeline.add_component("retriever", MilvusEmbeddingRetriever(document_store=document_store, top_k=3))
rag_pipeline.add_component("prompt_builder", PromptBuilder(template=prompt_template))
rag_pipeline.add_component("generator", OpenAIGenerator(api_key=Secret.from_token(os.getenv("OPENAI_API_KEY")),
                                                        generation_kwargs={"temperature": 0}))
rag_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
rag_pipeline.connect("retriever.documents", "prompt_builder.documents")
rag_pipeline.connect("prompt_builder", "generator")

results = rag_pipeline.run(
    {
        "text_embedder": {"text": question},
        "prompt_builder": {"query": question},
    }
)
print('RAG answer:', results["generator"]["replies"][0])
Feedback

Was this page helpful?