milvus-logo
LFAI
Home
  • Tutoriais

Grafo RAG com Milvus

Open In Colab GitHub Repository

A aplicação generalizada de modelos linguísticos de grande dimensão realça a importância de melhorar a exatidão e a relevância das suas respostas. A Geração Aumentada por Recuperação (RAG) melhora os modelos com bases de conhecimento externas, fornecendo mais informações contextuais e atenuando problemas como alucinação e conhecimento insuficiente. No entanto, confiar apenas em paradigmas RAG simples tem as suas limitações, especialmente quando se lida com relações complexas entre entidades e perguntas com vários saltos, em que o modelo tem frequentemente dificuldades em fornecer respostas exactas.

A introdução de gráficos de conhecimento (knowledge graphs - KGs) no sistema RAG oferece uma nova solução. Os KGs apresentam as entidades e as suas relações de forma estruturada, fornecendo informações de recuperação mais precisas e ajudando o RAG a lidar melhor com tarefas complexas de resposta a perguntas. O KG-RAG ainda está na sua fase inicial e não há consenso sobre como recuperar eficazmente entidades e relações a partir de KGs ou como integrar a pesquisa de semelhanças vectoriais com estruturas de grafos.

Neste caderno, apresentamos uma abordagem simples mas poderosa para melhorar significativamente o desempenho deste cenário. Trata-se de um paradigma RAG simples, com recuperação em vários sentidos e, em seguida, reordenação, mas que implementa logicamente o Graph RAG e atinge um desempenho de ponta no tratamento de questões multi-hop. Vamos ver como ele é implementado.

Pré-requisitos

Antes de executar este notebook, certifique-se de ter as seguintes dependências instaladas:

$ pip install --upgrade --quiet pymilvus numpy scipy langchain langchain-core langchain-openai tqdm

Se estiver a utilizar o Google Colab, para ativar as dependências acabadas de instalar, poderá ter de reiniciar o tempo de execução (clique no menu "Tempo de execução" na parte superior do ecrã e selecione "Reiniciar sessão" no menu pendente).

Vamos utilizar os modelos do OpenAI. Deve preparar a chave api OPENAI_API_KEY como uma variável de ambiente.

import os

os.environ["OPENAI_API_KEY"] = "sk-***********"

Importar as bibliotecas e dependências necessárias.

import numpy as np

from collections import defaultdict
from scipy.sparse import csr_matrix
from pymilvus import MilvusClient
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain_core.output_parsers import StrOutputParser, JsonOutputParser
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from tqdm import tqdm

Inicialize a instância do cliente Milvus, o LLM e o modelo de incorporação.

milvus_client = MilvusClient(uri="./milvus.db")

llm = ChatOpenAI(
    model="gpt-4o",
    temperature=0,
)
embedding_model = OpenAIEmbeddings(model="text-embedding-3-small")

Para os args em MilvusClient:

  • Definir o uri como um ficheiro local, por exemplo,./milvus.db, é o método mais conveniente, uma vez que utiliza automaticamente o Milvus Lite para armazenar todos os dados neste ficheiro.
  • Se tiver uma grande escala de dados, pode configurar um servidor Milvus mais eficiente em docker ou kubernetes. Nesta configuração, utilize o uri do servidor, por exemplo,http://localhost:19530, como o seu uri.
  • Se pretender utilizar o Zilliz Cloud, o serviço de nuvem totalmente gerido para o Milvus, ajuste os endereços uri e token, que correspondem ao Public Endpoint e à chave Api no Zilliz Cloud.

Carregamento de dados offline

Preparação de dados

Utilizaremos como exemplo um nano conjunto de dados que apresenta a relação entre a família Bernoulli e Euler. O nano conjunto de dados contém 4 passagens e um conjunto de triplas correspondentes, em que cada tripla contém um sujeito, um predicado e um objeto. Na prática, pode utilizar qualquer abordagem para extrair as triplas do seu próprio corpus personalizado.

nano_dataset = [
    {
        "passage": "Jakob Bernoulli (1654–1705): Jakob was one of the earliest members of the Bernoulli family to gain prominence in mathematics. He made significant contributions to calculus, particularly in the development of the theory of probability. He is known for the Bernoulli numbers and the Bernoulli theorem, a precursor to the law of large numbers. He was the older brother of Johann Bernoulli, another influential mathematician, and the two had a complex relationship that involved both collaboration and rivalry.",
        "triplets": [
            ["Jakob Bernoulli", "made significant contributions to", "calculus"],
            [
                "Jakob Bernoulli",
                "made significant contributions to",
                "the theory of probability",
            ],
            ["Jakob Bernoulli", "is known for", "the Bernoulli numbers"],
            ["Jakob Bernoulli", "is known for", "the Bernoulli theorem"],
            ["The Bernoulli theorem", "is a precursor to", "the law of large numbers"],
            ["Jakob Bernoulli", "was the older brother of", "Johann Bernoulli"],
        ],
    },
    {
        "passage": "Johann Bernoulli (1667–1748): Johann, Jakob’s younger brother, was also a major figure in the development of calculus. He worked on infinitesimal calculus and was instrumental in spreading the ideas of Leibniz across Europe. Johann also contributed to the calculus of variations and was known for his work on the brachistochrone problem, which is the curve of fastest descent between two points.",
        "triplets": [
            [
                "Johann Bernoulli",
                "was a major figure of",
                "the development of calculus",
            ],
            ["Johann Bernoulli", "was", "Jakob's younger brother"],
            ["Johann Bernoulli", "worked on", "infinitesimal calculus"],
            ["Johann Bernoulli", "was instrumental in spreading", "Leibniz's ideas"],
            ["Johann Bernoulli", "contributed to", "the calculus of variations"],
            ["Johann Bernoulli", "was known for", "the brachistochrone problem"],
        ],
    },
    {
        "passage": "Daniel Bernoulli (1700–1782): The son of Johann Bernoulli, Daniel made major contributions to fluid dynamics, probability, and statistics. He is most famous for Bernoulli’s principle, which describes the behavior of fluid flow and is fundamental to the understanding of aerodynamics.",
        "triplets": [
            ["Daniel Bernoulli", "was the son of", "Johann Bernoulli"],
            ["Daniel Bernoulli", "made major contributions to", "fluid dynamics"],
            ["Daniel Bernoulli", "made major contributions to", "probability"],
            ["Daniel Bernoulli", "made major contributions to", "statistics"],
            ["Daniel Bernoulli", "is most famous for", "Bernoulli’s principle"],
            [
                "Bernoulli’s principle",
                "is fundamental to",
                "the understanding of aerodynamics",
            ],
        ],
    },
    {
        "passage": "Leonhard Euler (1707–1783) was one of the greatest mathematicians of all time, and his relationship with the Bernoulli family was significant. Euler was born in Basel and was a student of Johann Bernoulli, who recognized his exceptional talent and mentored him in mathematics. Johann Bernoulli’s influence on Euler was profound, and Euler later expanded upon many of the ideas and methods he learned from the Bernoullis.",
        "triplets": [
            [
                "Leonhard Euler",
                "had a significant relationship with",
                "the Bernoulli family",
            ],
            ["leonhard Euler", "was born in", "Basel"],
            ["Leonhard Euler", "was a student of", "Johann Bernoulli"],
            ["Johann Bernoulli's influence", "was profound on", "Euler"],
        ],
    },
]

Construímos as entidades e as relações da seguinte forma:

  • A entidade é o sujeito ou o objeto no tripleto, pelo que os extraímos diretamente dos tripletos.
  • Aqui construímos o conceito de relação concatenando diretamente o sujeito, o predicado e o objeto com um espaço entre eles.

Também preparamos um dict para mapear o id da entidade para o id da relação, e outro dict para mapear o id da relação para o id da passagem, para utilização posterior.

entityid_2_relationids = defaultdict(list)
relationid_2_passageids = defaultdict(list)

entities = []
relations = []
passages = []
for passage_id, dataset_info in enumerate(nano_dataset):
    passage, triplets = dataset_info["passage"], dataset_info["triplets"]
    passages.append(passage)
    for triplet in triplets:
        if triplet[0] not in entities:
            entities.append(triplet[0])
        if triplet[2] not in entities:
            entities.append(triplet[2])
        relation = " ".join(triplet)
        if relation not in relations:
            relations.append(relation)
            entityid_2_relationids[entities.index(triplet[0])].append(
                len(relations) - 1
            )
            entityid_2_relationids[entities.index(triplet[2])].append(
                len(relations) - 1
            )
        relationid_2_passageids[relations.index(relation)].append(passage_id)

Inserção de dados

Criar colecções Milvus para entidade, relação e passagem. A coleção de entidades e a coleção de relações são utilizadas como as principais colecções para a construção de grafos no nosso método, enquanto a coleção de passagens é utilizada como comparação de recuperação RAG ingénua ou para fins auxiliares.

embedding_dim = len(embedding_model.embed_query("foo"))


def create_milvus_collection(collection_name: str):
    if milvus_client.has_collection(collection_name=collection_name):
        milvus_client.drop_collection(collection_name=collection_name)
    milvus_client.create_collection(
        collection_name=collection_name,
        dimension=embedding_dim,
        consistency_level="Strong",
    )


entity_col_name = "entity_collection"
relation_col_name = "relation_collection"
passage_col_name = "passage_collection"
create_milvus_collection(entity_col_name)
create_milvus_collection(relation_col_name)
create_milvus_collection(passage_col_name)

Inserir os dados com a sua informação de metadados nas colecções do Milvus, incluindo as colecções de entidades, relações e passagens. A informação de metadados inclui o id da passagem e o id da entidade ou relação adjacente.

def milvus_insert(
    collection_name: str,
    text_list: list[str],
):
    batch_size = 512
    for row_id in tqdm(range(0, len(text_list), batch_size), desc="Inserting"):
        batch_texts = text_list[row_id : row_id + batch_size]
        batch_embeddings = embedding_model.embed_documents(batch_texts)

        batch_ids = [row_id + j for j in range(len(batch_texts))]
        batch_data = [
            {
                "id": id_,
                "text": text,
                "vector": vector,
            }
            for id_, text, vector in zip(batch_ids, batch_texts, batch_embeddings)
        ]
        milvus_client.insert(
            collection_name=collection_name,
            data=batch_data,
        )


milvus_insert(
    collection_name=relation_col_name,
    text_list=relations,
)

milvus_insert(
    collection_name=entity_col_name,
    text_list=entities,
)

milvus_insert(
    collection_name=passage_col_name,
    text_list=passages,
)
Inserting: 100%|███████████████████████████████████| 1/1 [00:00<00:00,  1.02it/s]
Inserting: 100%|███████████████████████████████████| 1/1 [00:00<00:00,  1.39it/s]
Inserting: 100%|███████████████████████████████████| 1/1 [00:00<00:00,  2.28it/s]

Consulta online

Recuperação de semelhanças

Recuperamos as entidades e relações topK semelhantes com base na consulta de entrada do Milvus.

Ao efetuar a recuperação de entidades, devemos começar por extrair as entidades do texto da consulta utilizando um método específico como o NER (reconhecimento de entidades nomeadas). Para simplificar, preparamos aqui os resultados do NER. Se quiser alterar a consulta de acordo com a sua pergunta personalizada, tem de alterar a lista NER da consulta correspondente. Na prática, pode utilizar qualquer outro modelo ou abordagem para extrair as entidades da consulta.

query = "What contribution did the son of Euler's teacher make?"

query_ner_list = ["Euler"]
# query_ner_list = ner(query) # In practice, replace it with your custom NER approach

query_ner_embeddings = [
    embedding_model.embed_query(query_ner) for query_ner in query_ner_list
]

top_k = 3

entity_search_res = milvus_client.search(
    collection_name=entity_col_name,
    data=query_ner_embeddings,
    limit=top_k,
    output_fields=["id"],
)

query_embedding = embedding_model.embed_query(query)

relation_search_res = milvus_client.search(
    collection_name=relation_col_name,
    data=[query_embedding],
    limit=top_k,
    output_fields=["id"],
)[0]

Expandir o subgrafo

Utilizamos as entidades e relações recuperadas para expandir o subgrafo e obter as relações candidatas e, em seguida, fundimo-las das duas formas. Aqui está um fluxograma do processo de expansão do subgrafo:

Aqui construímos uma matriz de adjacência e utilizamos a multiplicação de matrizes para calcular a informação de mapeamento de adjacência em poucos graus. Desta forma, podemos obter rapidamente informações de qualquer grau de expansão.

# Construct the adjacency matrix of entities and relations where the value of the adjacency matrix is 1 if an entity is related to a relation, otherwise 0.
entity_relation_adj = np.zeros((len(entities), len(relations)))
for entity_id, entity in enumerate(entities):
    entity_relation_adj[entity_id, entityid_2_relationids[entity_id]] = 1

# Convert the adjacency matrix to a sparse matrix for efficient computation.
entity_relation_adj = csr_matrix(entity_relation_adj)

# Use the entity-relation adjacency matrix to construct 1 degree entity-entity and relation-relation adjacency matrices.
entity_adj_1_degree = entity_relation_adj @ entity_relation_adj.T
relation_adj_1_degree = entity_relation_adj.T @ entity_relation_adj

# Specify the target degree of the subgraph to be expanded.
# 1 or 2 is enough for most cases.
target_degree = 1

# Compute the target degree adjacency matrices using matrix multiplication.
entity_adj_target_degree = entity_adj_1_degree
for _ in range(target_degree - 1):
    entity_adj_target_degree = entity_adj_target_degree * entity_adj_1_degree
relation_adj_target_degree = relation_adj_1_degree
for _ in range(target_degree - 1):
    relation_adj_target_degree = relation_adj_target_degree * relation_adj_1_degree

entity_relation_adj_target_degree = entity_adj_target_degree @ entity_relation_adj

Ao retirar o valor da matriz de expansão do grau alvo, podemos facilmente expandir o grau correspondente da entidade e das relações recuperadas para obter todas as relações do subgrafo.

expanded_relations_from_relation = set()
expanded_relations_from_entity = set()
# You can set the similarity threshold here to guarantee the quality of the retrieved ones.
# entity_sim_filter_thresh = ...
# relation_sim_filter_thresh = ...

filtered_hit_relation_ids = [
    relation_res["entity"]["id"]
    for relation_res in relation_search_res
    # if relation_res['distance'] > relation_sim_filter_thresh
]
for hit_relation_id in filtered_hit_relation_ids:
    expanded_relations_from_relation.update(
        relation_adj_target_degree[hit_relation_id].nonzero()[1].tolist()
    )

filtered_hit_entity_ids = [
    one_entity_res["entity"]["id"]
    for one_entity_search_res in entity_search_res
    for one_entity_res in one_entity_search_res
    # if one_entity_res['distance'] > entity_sim_filter_thresh
]

for filtered_hit_entity_id in filtered_hit_entity_ids:
    expanded_relations_from_entity.update(
        entity_relation_adj_target_degree[filtered_hit_entity_id].nonzero()[1].tolist()
    )

# Merge the expanded relations from the relation and entity retrieval ways.
relation_candidate_ids = list(
    expanded_relations_from_relation | expanded_relations_from_entity
)

relation_candidate_texts = [
    relations[relation_id] for relation_id in relation_candidate_ids
]

Obtemos as relações candidatas através da expansão do subgrafo, que serão reclassificadas pela LLM no passo seguinte.

Classificação do LLM

Nesta fase, utilizamos o poderoso mecanismo de auto-atenção da LLM para filtrar e refinar o conjunto de relações candidatas. Utilizamos um prompt único, incorporando a consulta e o conjunto de relações candidatas no prompt, e instruímos a LLM a selecionar potenciais relações que possam ajudar a responder à consulta. Dado que algumas perguntas podem ser complexas, adoptamos a abordagem da Cadeia de Pensamento, permitindo que a LLM articule o seu processo de pensamento na sua resposta. Estipulamos que a resposta da LLM esteja no formato json para uma análise conveniente.

query_prompt_one_shot_input = """I will provide you with a list of relationship descriptions. Your task is to select 3 relationships that may be useful to answer the given question. Please return a JSON object containing your thought process and a list of the selected relationships in order of their relevance.

Question:
When was the mother of the leader of the Third Crusade born?

Relationship descriptions:
[1] Eleanor was born in 1122.
[2] Eleanor married King Louis VII of France.
[3] Eleanor was the Duchess of Aquitaine.
[4] Eleanor participated in the Second Crusade.
[5] Eleanor had eight children.
[6] Eleanor was married to Henry II of England.
[7] Eleanor was the mother of Richard the Lionheart.
[8] Richard the Lionheart was the King of England.
[9] Henry II was the father of Richard the Lionheart.
[10] Henry II was the King of England.
[11] Richard the Lionheart led the Third Crusade.

"""
query_prompt_one_shot_output = """{"thought_process": "To answer the question about the birth of the mother of the leader of the Third Crusade, I first need to identify who led the Third Crusade and then determine who his mother was. After identifying his mother, I can look for the relationship that mentions her birth.", "useful_relationships": ["[11] Richard the Lionheart led the Third Crusade", "[7] Eleanor was the mother of Richard the Lionheart", "[1] Eleanor was born in 1122"]}"""

query_prompt_template = """Question:
{question}

Relationship descriptions:
{relation_des_str}

"""


def rerank_relations(
    query: str, relation_candidate_texts: list[str], relation_candidate_ids: list[str]
) -> list[int]:
    relation_des_str = "\n".join(
        map(
            lambda item: f"[{item[0]}] {item[1]}",
            zip(relation_candidate_ids, relation_candidate_texts),
        )
    ).strip()
    rerank_prompts = ChatPromptTemplate.from_messages(
        [
            HumanMessage(query_prompt_one_shot_input),
            AIMessage(query_prompt_one_shot_output),
            HumanMessagePromptTemplate.from_template(query_prompt_template),
        ]
    )
    rerank_chain = (
        rerank_prompts
        | llm.bind(response_format={"type": "json_object"})
        | JsonOutputParser()
    )
    rerank_res = rerank_chain.invoke(
        {"question": query, "relation_des_str": relation_des_str}
    )
    rerank_relation_ids = []
    rerank_relation_lines = rerank_res["useful_relationships"]
    id_2_lines = {}
    for line in rerank_relation_lines:
        id_ = int(line[line.find("[") + 1 : line.find("]")])
        id_2_lines[id_] = line.strip()
        rerank_relation_ids.append(id_)
    return rerank_relation_ids


rerank_relation_ids = rerank_relations(
    query,
    relation_candidate_texts=relation_candidate_texts,
    relation_candidate_ids=relation_candidate_ids,
)

Obter resultados finais

Podemos obter as passagens finais recuperadas das relações reclassificadas.

final_top_k = 2

final_passages = []
final_passage_ids = []
for relation_id in rerank_relation_ids:
    for passage_id in relationid_2_passageids[relation_id]:
        if passage_id not in final_passage_ids:
            final_passage_ids.append(passage_id)
            final_passages.append(passages[passage_id])
passages_from_our_method = final_passages[:final_top_k]

Podemos comparar os resultados com o método RAG ingénuo, que obtém as passagens topK com base na incorporação da consulta diretamente a partir da coleção de passagens.

naive_passage_res = milvus_client.search(
    collection_name=passage_col_name,
    data=[query_embedding],
    limit=final_top_k,
    output_fields=["text"],
)[0]
passages_from_naive_rag = [res["entity"]["text"] for res in naive_passage_res]

print(
    f"Passages retrieved from naive RAG: \n{passages_from_naive_rag}\n\n"
    f"Passages retrieved from our method: \n{passages_from_our_method}\n\n"
)


prompt = ChatPromptTemplate.from_messages(
    [
        (
            "human",
            """Use the following pieces of retrieved context to answer the question. If there is not enough information in the retrieved context to answer the question, just say that you don't know.
Question: {question}
Context: {context}
Answer:""",
        )
    ]
)

rag_chain = prompt | llm | StrOutputParser()

answer_from_naive_rag = rag_chain.invoke(
    {"question": query, "context": "\n".join(passages_from_naive_rag)}
)
answer_from_our_method = rag_chain.invoke(
    {"question": query, "context": "\n".join(passages_from_our_method)}
)

print(
    f"Answer from naive RAG: {answer_from_naive_rag}\n\nAnswer from our method: {answer_from_our_method}"
)
Passages retrieved from naive RAG: 
['Leonhard Euler (1707–1783) was one of the greatest mathematicians of all time, and his relationship with the Bernoulli family was significant. Euler was born in Basel and was a student of Johann Bernoulli, who recognized his exceptional talent and mentored him in mathematics. Johann Bernoulli’s influence on Euler was profound, and Euler later expanded upon many of the ideas and methods he learned from the Bernoullis.', 'Johann Bernoulli (1667–1748): Johann, Jakob’s younger brother, was also a major figure in the development of calculus. He worked on infinitesimal calculus and was instrumental in spreading the ideas of Leibniz across Europe. Johann also contributed to the calculus of variations and was known for his work on the brachistochrone problem, which is the curve of fastest descent between two points.']

Passages retrieved from our method: 
['Leonhard Euler (1707–1783) was one of the greatest mathematicians of all time, and his relationship with the Bernoulli family was significant. Euler was born in Basel and was a student of Johann Bernoulli, who recognized his exceptional talent and mentored him in mathematics. Johann Bernoulli’s influence on Euler was profound, and Euler later expanded upon many of the ideas and methods he learned from the Bernoullis.', 'Daniel Bernoulli (1700–1782): The son of Johann Bernoulli, Daniel made major contributions to fluid dynamics, probability, and statistics. He is most famous for Bernoulli’s principle, which describes the behavior of fluid flow and is fundamental to the understanding of aerodynamics.']


Answer from naive RAG: I don't know. The retrieved context does not provide information about the contributions made by the son of Euler's teacher.

Answer from our method: The son of Euler's teacher, Daniel Bernoulli, made major contributions to fluid dynamics, probability, and statistics. He is most famous for Bernoulli’s principle, which describes the behavior of fluid flow and is fundamental to the understanding of aerodynamics.

Como podemos ver, as passagens recuperadas pelo método RAG ingénuo não incluíam uma passagem verdadeira, o que levou a uma resposta errada. As passagens recuperadas pelo nosso método estão corretas e ajudam a obter uma resposta precisa à pergunta.

Traduzido porDeepL

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

Esta página foi útil?