문자열 필드
Milvus에서 VARCHAR
은 문자열 유형 데이터를 저장하는 데 사용되는 데이터 유형으로, 가변 길이 문자열을 저장하는 데 적합합니다. 최대 60,535자의 단일 및 다중 바이트 문자열을 모두 저장할 수 있으며, 최대 길이는 60,535자입니다. VARCHAR
필드를 정의할 때는 최대 길이 매개변수 max_length
도 지정해야 합니다. VARCHAR
문자열 유형은 텍스트 데이터를 저장하고 관리하는 효율적이고 유연한 방법을 제공하므로 다양한 길이의 문자열을 처리하는 애플리케이션에 이상적입니다.
VARCHAR 필드 추가
Milvus에서 문자열 데이터를 사용하려면 컬렉션을 만들 때 VARCHAR
필드를 정의하세요. 이 프로세스에는 다음이 포함됩니다.
datatype
을 지원되는 문자열 데이터 유형(예:VARCHAR
으로 설정합니다.max_length
매개변수를 사용하여 문자열 유형의 최대 길이를 지정합니다(60,535자를 초과할 수 없음).
from pymilvus import MilvusClient, DataType
client = MilvusClient(uri="http://localhost:19530")
# define schema
schema = client.create_schema(
auto_id=False,
enable_dynamic_fields=True,
)
schema.add_field(field_name="varchar_field1", datatype=DataType.VARCHAR, max_length=100)
schema.add_field(field_name="varchar_field2", datatype=DataType.VARCHAR, max_length=200)
schema.add_field(field_name="pk", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="embedding", datatype=DataType.FLOAT_VECTOR, dim=3)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.common.DataType;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;
MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
.uri("http://localhost:19530")
.build());
CreateCollectionReq.CollectionSchema schema = client.createSchema();
schema.setEnableDynamicField(true);
schema.addField(AddFieldReq.builder()
.fieldName("varchar_field1")
.dataType(DataType.VarChar)
.maxLength(100)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("varchar_field2")
.dataType(DataType.VarChar)
.maxLength(200)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("pk")
.dataType(DataType.Int64)
.isPrimaryKey(true)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("embedding")
.dataType(DataType.FloatVector)
.dimension(3)
.build());
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const schema = [
{
name: "metadata",
data_type: DataType.JSON,
},
{
name: "pk",
data_type: DataType.Int64,
is_primary_key: true,
},
{
name: "varchar_field2",
data_type: DataType.VarChar,
max_length: 200,
},
{
name: "varchar_field1",
data_type: DataType.VarChar,
max_length: 100,
},
];
export varcharField1='{
"fieldName": "varchar_field1",
"dataType": "VarChar",
"elementTypeParams": {
"max_length": 100
}
}'
export varcharField2='{
"fieldName": "varchar_field2",
"dataType": "VarChar",
"elementTypeParams": {
"max_length": 200
}
}'
export primaryField='{
"fieldName": "pk",
"dataType": "Int64",
"isPrimary": true
}'
export vectorField='{
"fieldName": "embedding",
"dataType": "FloatVector",
"elementTypeParams": {
"dim": 3
}
}'
export schema="{
\"autoID\": false,
\"fields\": [
$varcharField1,
$varcharField2,
$primaryField,
$vectorField
]
}"
이 예에서는 varchar_field1
및 varchar_field2
두 개의 VARCHAR
필드를 추가하고 각각 최대 길이를 100자 및 200자로 설정합니다. 과도한 공간 할당을 피하면서 가장 긴 데이터를 수용할 수 있도록 데이터 특성에 따라 max_length
을 설정하는 것이 좋습니다. 또한 기본 필드 pk
와 벡터 필드 embedding
를 추가했습니다.
기본 필드와 벡터 필드는 컬렉션을 만들 때 필수입니다. 기본 필드는 각 엔티티를 고유하게 식별하며, 벡터 필드는 유사성 검색에 매우 중요합니다. 자세한 내용은 기본 필드 및 자동 ID, 고밀도 벡터, 이진 벡터 또는 스파스 벡터를 참조하세요.
인덱스 매개변수 설정
VARCHAR
필드에 대한 인덱스 매개변수를 설정하는 것은 선택 사항이지만 검색 효율성을 크게 향상시킬 수 있습니다.
다음 예제에서는 varchar_field1
에 대해 AUTOINDEX
를 생성하여 Milvus가 데이터 유형에 따라 적절한 인덱스를 자동으로 생성합니다. 자세한 내용은 자동 인덱스를 참조하세요.
index_params = client.prepare_index_params()
index_params.add_index(
field_name="varchar_field1",
index_type="AUTOINDEX",
index_name="varchar_index"
)
import io.milvus.v2.common.IndexParam;
import java.util.*;
List<IndexParam> indexes = new ArrayList<>();
indexes.add(IndexParam.builder()
.fieldName("varchar_field1")
.indexName("varchar_index")
.indexType(IndexParam.IndexType.AUTOINDEX)
.build());
const indexParams = [{
index_name: 'varchar_index',
field_name: 'varchar_field1',
index_type: IndexType.AUTOINDEX,
)];
export indexParams='[
{
"fieldName": "varchar_field1",
"indexName": "varchar_index",
"indexType": "AUTOINDEX"
}
]'
AUTOINDEX
외에도 INVERTED
또는 BITMAP
와 같은 다른 스칼라 인덱스 유형을 지정할 수 있습니다. 지원되는 인덱스 유형은 스칼라 인덱스를 참조하세요.
또한 컬렉션을 만들기 전에 벡터 필드에 대한 인덱스를 만들어야 합니다. 이 예에서는 AUTOINDEX
을 사용하여 벡터 인덱스 설정을 간소화합니다.
# Add vector index
index_params.add_index(
field_name="embedding",
index_type="AUTOINDEX", # Use automatic indexing to simplify complex index settings
metric_type="COSINE" # Specify similarity metric type, options include L2, COSINE, or IP
)
indexes.add(IndexParam.builder()
.fieldName("embedding")
.indexType(IndexParam.IndexType.AUTOINDEX)
.metricType(IndexParam.MetricType.COSINE)
.build());
indexParams.push({
index_name: 'embedding_index',
field_name: 'embedding',
metric_type: MetricType.COSINE,
index_type: IndexType.AUTOINDEX,
});
export indexParams='[
{
"fieldName": "varchar_field1",
"indexName": "varchar_index",
"indexType": "AUTOINDEX"
},
{
"fieldName": "embedding",
"metricType": "COSINE",
"indexType": "AUTOINDEX"
}
]'
컬렉션 만들기
스키마와 인덱스가 정의되면 문자열 필드를 포함하는 컬렉션을 만들 수 있습니다.
# Create Collection
client.create_collection(
collection_name="your_collection_name",
schema=schema,
index_params=index_params
)
CreateCollectionReq requestCreate = CreateCollectionReq.builder()
.collectionName("my_varchar_collection")
.collectionSchema(schema)
.indexParams(indexes)
.build();
client.createCollection(requestCreate);
client.create_collection({
collection_name: "my_varchar_collection",
schema: schema,
index_params: index_params
})
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
\"collectionName\": \"my_varchar_collection\",
\"schema\": $schema,
\"indexParams\": $indexParams
}"
## {"code":0,"data":{}}
데이터 삽입
컬렉션을 만든 후 문자열 필드를 포함하는 데이터를 삽입할 수 있습니다.
data = [
{"varchar_field1": "Product A", "varchar_field2": "High quality product", "pk": 1, "embedding": [0.1, 0.2, 0.3]},
{"varchar_field1": "Product B", "varchar_field2": "Affordable price", "pk": 2, "embedding": [0.4, 0.5, 0.6]},
{"varchar_field1": "Product C", "varchar_field2": "Best seller", "pk": 3, "embedding": [0.7, 0.8, 0.9]},
]
client.insert(
collection_name="my_varchar_collection",
data=data
)
import com.google.gson.Gson;
import com.google.gson.JsonObject;
import io.milvus.v2.service.vector.request.InsertReq;
import io.milvus.v2.service.vector.response.InsertResp;
List<JsonObject> rows = new ArrayList<>();
Gson gson = new Gson();
rows.add(gson.fromJson("{\"varchar_field1\": \"Product A\", \"varchar_field2\": \"High quality product\", \"pk\": 1, \"embedding\": [0.1, 0.2, 0.3]}", JsonObject.class));
rows.add(gson.fromJson("{\"varchar_field1\": \"Product B\", \"varchar_field2\": \"Affordable price\", \"pk\": 2, \"embedding\": [0.4, 0.5, 0.6]}", JsonObject.class));
rows.add(gson.fromJson("{\"varchar_field1\": \"Product C\", \"varchar_field2\": \"Best seller\", \"pk\": 3, \"embedding\": [0.7, 0.8, 0.9]}", JsonObject.class));
InsertResp insertR = client.insert(InsertReq.builder()
.collectionName("my_varchar_collection")
.data(rows)
.build());
const data = [
{
varchar_field1: "Product A",
varchar_field2: "High quality product",
pk: 1,
embedding: [0.1, 0.2, 0.3],
},
{
varchar_field1: "Product B",
varchar_field2: "Affordable price",
pk: 2,
embedding: [0.4, 0.5, 0.6],
},
{
varchar_field1: "Product C",
varchar_field2: "Best seller",
pk: 3,
embedding: [0.7, 0.8, 0.9],
},
];
client.insert({
collection_name: "my_sparse_collection",
data: data,
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/insert" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"data": [
{"varchar_field1": "Product A", "varchar_field2": "High quality product", "pk": 1, "embedding": [0.1, 0.2, 0.3]},
{"varchar_field1": "Product B", "varchar_field2": "Affordable price", "pk": 2, "embedding": [0.4, 0.5, 0.6]},
{"varchar_field1": "Product C", "varchar_field2": "Best seller", "pk": 3, "embedding": [0.7, 0.8, 0.9]}
],
"collectionName": "my_varchar_collection"
}'
## {"code":0,"cost":0,"data":{"insertCount":3,"insertIds":[1,2,3]}}
이 예제에서는 VARCHAR
필드(varchar_field1
및 varchar_field2
), 기본 필드(pk
) 및 벡터 표현(embedding
)을 포함하는 데이터를 삽입합니다. 삽입된 데이터가 스키마에 정의된 필드와 일치하는지 확인하려면 데이터 유형을 미리 확인하여 삽입 오류를 방지하는 것이 좋습니다.
스키마를 정의할 때 enable_dynamic_fields=True
을 설정하면 Milvus에서는 사전에 정의되지 않은 문자열 필드를 삽입할 수 있습니다. 그러나 이렇게 하면 쿼리 및 관리의 복잡성이 증가하여 성능에 영향을 미칠 수 있습니다. 자세한 내용은 동적 필드를 참조하세요.
검색 및 쿼리
문자열 필드를 추가한 후에는 검색 및 쿼리 작업에서 필터링에 사용하여 보다 정확한 검색 결과를 얻을 수 있습니다.
쿼리 필터링
문자열 필드를 추가한 후에는 쿼리에서 이러한 필드를 사용하여 결과를 필터링할 수 있습니다. 예를 들어 varchar_field1
이 "Product A"
과 같은 모든 엔티티를 쿼리할 수 있습니다.
filter = 'varchar_field1 == "Product A"'
res = client.query(
collection_name="my_varchar_collection",
filter=filter,
output_fields=["varchar_field1", "varchar_field2"]
)
print(res)
# Output
# data: ["{'varchar_field1': 'Product A', 'varchar_field2': 'High quality product', 'pk': 1}"]
import io.milvus.v2.service.vector.request.QueryReq;
import io.milvus.v2.service.vector.response.QueryResp;
String filter = "varchar_field1 == \"Product A\"";
QueryResp resp = client.query(QueryReq.builder()
.collectionName("my_varchar_collection")
.filter(filter)
.outputFields(Arrays.asList("varchar_field1", "varchar_field2"))
.build());
System.out.println(resp.getQueryResults());
// Output
//
// [QueryResp.QueryResult(entity={varchar_field1=Product A, varchar_field2=High quality product, pk=1})]
client.query({
collection_name: 'my_varchar_collection',
filter: 'varchar_field1 == "Product A"',
output_fields: ['varchar_field1', 'varchar_field2']
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "my_varchar_collection",
"filter": "varchar_field1 == \"Product A\"",
"outputFields": ["varchar_field1", "varchar_field2"]
}'
## {"code":0,"cost":0,"data":[{"pk":1,"varchar_field1":"Product A","varchar_field2":"High quality product"}]}
이 쿼리 표현식은 일치하는 모든 엔티티를 반환하고 해당 엔티티의 varchar_field1
및 varchar_field2
필드를 출력합니다. 필터 쿼리에 대한 자세한 내용은 메타데이터 필터링을 참조하세요.
문자열 필터링을 사용한 벡터 검색
기본 스칼라 필드 필터링 외에도 벡터 유사도 검색을 스칼라 필드 필터와 결합할 수 있습니다. 예를 들어, 다음 코드는 벡터 검색에 스칼라 필드 필터를 추가하는 방법을 보여줍니다.
filter = 'varchar_field1 == "Product A"'
res = client.search(
collection_name="my_varchar_collection",
data=[[0.3, -0.6, 0.1]],
limit=5,
search_params={"params": {"nprobe": 10}},
output_fields=["varchar_field1", "varchar_field2"],
filter=filter
)
print(res)
# Output
# data: ["[{'id': 1, 'distance': -0.06000000238418579, 'entity': {'varchar_field1': 'Product A', 'varchar_field2': 'High quality product'}}]"]
import io.milvus.v2.service.vector.request.SearchReq;
import io.milvus.v2.service.vector.response.SearchResp;
String filter = "varchar_field1 == \"Product A\"";
SearchResp resp = client.search(SearchReq.builder()
.collectionName("my_varchar_collection")
.annsField("embedding")
.data(Collections.singletonList(new FloatVec(new float[]{0.3f, -0.6f, 0.1f})))
.topK(5)
.outputFields(Arrays.asList("varchar_field1", "varchar_field2"))
.filter(filter)
.build());
System.out.println(resp.getSearchResults());
// Output
//
// [[SearchResp.SearchResult(entity={varchar_field1=Product A, varchar_field2=High quality product}, score=-0.2364331, id=1)]]
client.search({
collection_name: 'my_varchar_collection',
data: [0.3, -0.6, 0.1],
limit: 5,
output_fields: ['varchar_field1', 'varchar_field2'],
filter: 'varchar_field1 == "Product A"'
params: {
nprobe:10
}
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "my_varchar_collection",
"data": [
[0.3, -0.6, 0.1]
],
"limit": 5,
"searchParams":{
"params":{"nprobe":10}
},
"outputFields": ["varchar_field1", "varchar_field2"],
"filter": "varchar_field1 == \"Product A\""
}'
## {"code":0,"cost":0,"data":[{"distance":-0.2364331,"id":1,"varchar_field1":"Product A","varchar_field2":"High quality product"}]}
이 예에서는 먼저 쿼리 벡터를 정의하고 검색 중에 필터 조건 varchar_field1 == "Product A"
을 추가합니다. 이렇게 하면 검색 결과가 쿼리 벡터와 유사할 뿐만 아니라 지정된 문자열 필터 조건과도 일치하도록 보장합니다. 자세한 내용은 메타데이터 필터링을 참조하세요.