Milvus와 Crawl4AI로 RAG 구축하기
Crawl4AI는 LLM을 위한 초고속의 AI 지원 웹 크롤링을 제공합니다. 오픈 소스이며 RAG에 최적화된 이 솔루션은 고급 추출과 실시간 성능으로 스크래핑을 간소화합니다.
이 튜토리얼에서는 Milvus와 Crawl4AI를 사용해 검색 증강 생성(RAG) 파이프라인을 구축하는 방법을 보여드립니다. 이 파이프라인은 웹 데이터 크롤링을 위한 Crawl4AI, 벡터 스토리지를 위한 Milvus, 인사이트가 있는 문맥 인식 응답을 생성하기 위한 OpenAI를 통합합니다.
준비
종속성 및 환경
시작하려면 다음 명령을 실행하여 필요한 종속 요소를 설치하세요:
$ pip install -U crawl4ai pymilvus openai requests tqdm
Google Colab을 사용하는 경우 방금 설치한 종속 요소를 사용하려면 런타임을 다시 시작해야 할 수 있습니다(화면 상단의 '런타임' 메뉴를 클릭하고 드롭다운 메뉴에서 '세션 다시 시작'을 선택).
crawl4ai를 완전히 설정하려면 다음 명령을 실행하세요:
# Run post-installation setup
$ crawl4ai-setup
# Verify installation
$ crawl4ai-doctor
[36m[INIT].... → Running post-installation setup...[0m
[36m[INIT].... → Installing Playwright browsers...[0m
[32m[COMPLETE] ● Playwright installation completed successfully.[0m
[36m[INIT].... → Starting database initialization...[0m
[32m[COMPLETE] ● Database initialization completed successfully.[0m
[32m[COMPLETE] ● Post-installation setup completed![0m
[0m[36m[INIT].... → Running Crawl4AI health check...[0m
[36m[INIT].... → Crawl4AI 0.4.247[0m
[36m[TEST].... ℹ Testing crawling capabilities...[0m
[36m[EXPORT].. ℹ Exporting PDF and taking screenshot took 0.80s[0m
[32m[FETCH]... ↓ https://crawl4ai.com... | Status: [32mTrue[0m | Time: 4.22s[0m
[36m[SCRAPE].. ◆ Processed https://crawl4ai.com... | Time: 14ms[0m
[32m[COMPLETE] ● https://crawl4ai.com... | Status: [32mTrue[0m | Total: [33m4.23s[0m[0m
[32m[COMPLETE] ● ✅ Crawling test passed![0m
[0m
OpenAI API 키 설정
이 예제에서는 OpenAI를 LLM으로 사용하겠습니다. 환경 변수로 OPENAI_API_KEY를 준비해야 합니다.
import os
os.environ["OPENAI_API_KEY"] = "sk-***********"
LLM 및 임베딩 모델 준비
임베딩 모델을 준비하기 위해 OpenAI 클라이언트를 초기화합니다.
from openai import OpenAI
openai_client = OpenAI()
OpenAI 클라이언트를 사용하여 텍스트 임베딩을 생성하는 함수를 정의합니다. 텍스트 임베딩 3-소형 모델을 예로 사용합니다.
def emb_text(text):
return (
openai_client.embeddings.create(input=text, model="text-embedding-3-small")
.data[0]
.embedding
)
테스트 임베딩을 생성하고 해당 치수와 처음 몇 개의 요소를 인쇄합니다.
test_embedding = emb_text("This is a test")
embedding_dim = len(test_embedding)
print(embedding_dim)
print(test_embedding[:10])
1536
[0.009889289736747742, -0.005578675772994757, 0.00683477520942688, -0.03805781528353691, -0.01824733428657055, -0.04121600463986397, -0.007636285852640867, 0.03225184231996536, 0.018949154764413834, 9.352207416668534e-05]
Crawl4AI를 사용하여 데이터 크롤링하기
from crawl4ai import *
async def crawl():
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
url="https://lilianweng.github.io/posts/2023-06-23-agent/",
)
return result.markdown
markdown_content = await crawl()
[INIT].... → Crawl4AI 0.4.247
[FETCH]... ↓ https://lilianweng.github.io/posts/2023-06-23-agen... | Status: True | Time: 0.07s
[COMPLETE] ● https://lilianweng.github.io/posts/2023-06-23-agen... | Status: True | Total: 0.08s
크롤링된 콘텐츠 처리
크롤링된 콘텐츠를 Milvus에 삽입하기 위해 관리하기 쉽게 만들기 위해 "#"를 사용하여 콘텐츠를 구분하면 크롤링된 마크다운 파일의 각 주요 부분의 콘텐츠를 대략적으로 구분할 수 있습니다.
def split_markdown_content(content):
return [section.strip() for section in content.split("# ") if section.strip()]
# Process the crawled markdown content
sections = split_markdown_content(markdown_content)
# Print the first few sections to understand the structure
for i, section in enumerate(sections[:3]):
print(f"Section {i+1}:")
print(section[:300] + "...")
print("-" * 50)
Section 1:
[Lil'Log](https://lilianweng.github.io/posts/2023-06-23-agent/<https:/lilianweng.github.io/> "Lil'Log \(Alt + H\)")
* |
* [ Posts ](https://lilianweng.github.io/posts/2023-06-23-agent/<https:/lilianweng.github.io/> "Posts")
* [ Archive ](https://lilianweng.github.io/posts/2023-06-23-agent/<h...
--------------------------------------------------
Section 2:
LLM Powered Autonomous Agents
Date: June 23, 2023 | Estimated Reading Time: 31 min | Author: Lilian Weng
Table of Contents
* [Agent System Overview](https://lilianweng.github.io/posts/2023-06-23-agent/<#agent-system-overview>)
* [Component One: Planning](https://lilianweng.github.io/posts/2023...
--------------------------------------------------
Section 3:
Agent System Overview[#](https://lilianweng.github.io/posts/2023-06-23-agent/<#agent-system-overview>)
In a LLM-powered autonomous agent system, LLM functions as the agent’s brain, complemented by several key components:
* **Planning**
* Subgoal and decomposition: The agent breaks down large t...
--------------------------------------------------
Milvus에 데이터 로드
컬렉션 생성
from pymilvus import MilvusClient
milvus_client = MilvusClient(uri="./milvus_demo.db")
collection_name = "my_rag_collection"
INFO:numexpr.utils:Note: NumExpr detected 10 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
INFO:numexpr.utils:NumExpr defaulting to 8 threads.
MilvusClient
의 인수는 다음과 같습니다:
uri
를 로컬 파일(예:./milvus.db
)로 설정하는 것이 가장 편리한 방법인데, 이 파일에 모든 데이터를 저장하기 위해 Milvus Lite를 자동으로 활용하기 때문입니다.데이터의 규모가 큰 경우, 도커나 쿠버네티스에 더 성능이 좋은 Milvus 서버를 설정할 수 있습니다. 이 설정에서는 서버 URL(예:
http://localhost:19530
)을uri
으로 사용하세요.밀버스의 완전 관리형 클라우드 서비스인 질리즈 클라우드를 사용하려면, 질리즈 클라우드의 퍼블릭 엔드포인트와 API 키에 해당하는
uri
와token
을 조정하세요.
컬렉션이 이미 존재하는지 확인하고 존재한다면 삭제합니다.
if milvus_client.has_collection(collection_name):
milvus_client.drop_collection(collection_name)
지정된 파라미터로 새 컬렉션을 생성합니다.
필드 정보를 지정하지 않으면 기본 키인 id
필드와 벡터 데이터를 저장할 vector
필드가 자동으로 생성됩니다. 예약된 JSON 필드는 스키마에 정의되지 않은 필드와 그 값을 저장하는 데 사용됩니다.
milvus_client.create_collection(
collection_name=collection_name,
dimension=embedding_dim,
metric_type="IP", # Inner product distance
consistency_level="Strong", # Strong consistency level
)
데이터 삽입
from tqdm import tqdm
data = []
for i, section in enumerate(tqdm(sections, desc="Processing sections")):
embedding = emb_text(section)
data.append({"id": i, "vector": embedding, "text": section})
# Insert data into Milvus
milvus_client.insert(collection_name=collection_name, data=data)
Processing sections: 0%| | 0/18 [00:00<?, ?it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 6%|▌ | 1/18 [00:00<00:12, 1.37it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 11%|█ | 2/18 [00:01<00:11, 1.39it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 17%|█▋ | 3/18 [00:02<00:10, 1.40it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 22%|██▏ | 4/18 [00:02<00:07, 1.85it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 28%|██▊ | 5/18 [00:02<00:06, 2.06it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 33%|███▎ | 6/18 [00:03<00:06, 1.94it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 39%|███▉ | 7/18 [00:03<00:05, 2.14it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 44%|████▍ | 8/18 [00:04<00:04, 2.29it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 50%|█████ | 9/18 [00:04<00:04, 2.20it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 56%|█████▌ | 10/18 [00:05<00:03, 2.09it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 61%|██████ | 11/18 [00:06<00:04, 1.68it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 67%|██████▋ | 12/18 [00:06<00:04, 1.48it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 72%|███████▏ | 13/18 [00:07<00:02, 1.75it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 78%|███████▊ | 14/18 [00:07<00:01, 2.02it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 83%|████████▎ | 15/18 [00:07<00:01, 2.12it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 89%|████████▉ | 16/18 [00:08<00:01, 1.61it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 94%|█████████▍| 17/18 [00:09<00:00, 1.92it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 100%|██████████| 18/18 [00:09<00:00, 1.83it/s]
{'insert_count': 18, 'ids': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], 'cost': 0}
RAG 구축
쿼리에 대한 데이터 검색
방금 크롤링한 웹사이트에 대한 쿼리 질문을 지정해 보겠습니다.
question = "What are the main components of autonomous agents?"
컬렉션에서 질문을 검색하고 시맨틱 상위 3개 일치 항목을 검색합니다.
search_res = milvus_client.search(
collection_name=collection_name,
data=[emb_text(question)],
limit=3,
search_params={"metric_type": "IP", "params": {}},
output_fields=["text"],
)
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
쿼리의 검색 결과를 살펴봅시다.
import json
retrieved_lines_with_distances = [
(res["entity"]["text"], res["distance"]) for res in search_res[0]
]
print(json.dumps(retrieved_lines_with_distances, indent=4))
[
[
"Agent System Overview[#](https://lilianweng.github.io/posts/2023-06-23-agent/<#agent-system-overview>)\nIn a LLM-powered autonomous agent system, LLM functions as the agent\u2019s brain, complemented by several key components:\n * **Planning**\n * Subgoal and decomposition: The agent breaks down large tasks into smaller, manageable subgoals, enabling efficient handling of complex tasks.\n * Reflection and refinement: The agent can do self-criticism and self-reflection over past actions, learn from mistakes and refine them for future steps, thereby improving the quality of final results.\n * **Memory**\n * Short-term memory: I would consider all the in-context learning (See [Prompt Engineering](https://lilianweng.github.io/posts/2023-06-23-agent/<https:/lilianweng.github.io/posts/2023-03-15-prompt-engineering/>)) as utilizing short-term memory of the model to learn.\n * Long-term memory: This provides the agent with the capability to retain and recall (infinite) information over extended periods, often by leveraging an external vector store and fast retrieval.\n * **Tool use**\n * The agent learns to call external APIs for extra information that is missing from the model weights (often hard to change after pre-training), including current information, code execution capability, access to proprietary information sources and more.\n\n Fig. 1. Overview of a LLM-powered autonomous agent system.",
0.6433743238449097
],
[
"LLM Powered Autonomous Agents \nDate: June 23, 2023 | Estimated Reading Time: 31 min | Author: Lilian Weng \nTable of Contents\n * [Agent System Overview](https://lilianweng.github.io/posts/2023-06-23-agent/<#agent-system-overview>)\n * [Component One: Planning](https://lilianweng.github.io/posts/2023-06-23-agent/<#component-one-planning>)\n * [Task Decomposition](https://lilianweng.github.io/posts/2023-06-23-agent/<#task-decomposition>)\n * [Self-Reflection](https://lilianweng.github.io/posts/2023-06-23-agent/<#self-reflection>)\n * [Component Two: Memory](https://lilianweng.github.io/posts/2023-06-23-agent/<#component-two-memory>)\n * [Types of Memory](https://lilianweng.github.io/posts/2023-06-23-agent/<#types-of-memory>)\n * [Maximum Inner Product Search (MIPS)](https://lilianweng.github.io/posts/2023-06-23-agent/<#maximum-inner-product-search-mips>)\n * [Component Three: Tool Use](https://lilianweng.github.io/posts/2023-06-23-agent/<#component-three-tool-use>)\n * [Case Studies](https://lilianweng.github.io/posts/2023-06-23-agent/<#case-studies>)\n * [Scientific Discovery Agent](https://lilianweng.github.io/posts/2023-06-23-agent/<#scientific-discovery-agent>)\n * [Generative Agents Simulation](https://lilianweng.github.io/posts/2023-06-23-agent/<#generative-agents-simulation>)\n * [Proof-of-Concept Examples](https://lilianweng.github.io/posts/2023-06-23-agent/<#proof-of-concept-examples>)\n * [Challenges](https://lilianweng.github.io/posts/2023-06-23-agent/<#challenges>)\n * [Citation](https://lilianweng.github.io/posts/2023-06-23-agent/<#citation>)\n * [References](https://lilianweng.github.io/posts/2023-06-23-agent/<#references>)\n\n\nBuilding agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as [AutoGPT](https://lilianweng.github.io/posts/2023-06-23-agent/<https:/github.com/Significant-Gravitas/Auto-GPT>), [GPT-Engineer](https://lilianweng.github.io/posts/2023-06-23-agent/<https:/github.com/AntonOsika/gpt-engineer>) and [BabyAGI](https://lilianweng.github.io/posts/2023-06-23-agent/<https:/github.com/yoheinakajima/babyagi>), serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.",
0.5462194085121155
],
[
"Component One: Planning[#](https://lilianweng.github.io/posts/2023-06-23-agent/<#component-one-planning>)\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\n#",
0.5223420858383179
]
]
LLM을 사용하여 RAG 응답 얻기
검색된 문서를 문자열 형식으로 변환합니다.
context = "\n".join(
[line_with_distance[0] for line_with_distance in retrieved_lines_with_distances]
)
Lanage 모델에 대한 시스템 및 사용자 프롬프트를 정의합니다. 이 프롬프트는 Milvus에서 검색된 문서로 조립됩니다.
SYSTEM_PROMPT = """
Human: You are an AI assistant. You are able to find answers to the questions from the contextual passage snippets provided.
"""
USER_PROMPT = f"""
Use the following pieces of information enclosed in <context> tags to provide an answer to the question enclosed in <question> tags.
<context>
{context}
</context>
<question>
{question}
</question>
"""
OpenAI ChatGPT를 사용하여 프롬프트에 따라 응답을 생성합니다.
response = openai_client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": USER_PROMPT},
],
)
print(response.choices[0].message.content)
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
The main components of autonomous agents are:
1. **Planning**:
- Subgoal and decomposition: Breaking down large tasks into smaller, manageable subgoals.
- Reflection and refinement: Self-criticism and reflection to learn from past actions and improve future steps.
2. **Memory**:
- Short-term memory: In-context learning using prompt engineering.
- Long-term memory: Retaining and recalling information over extended periods using an external vector store and fast retrieval.
3. **Tool use**:
- Calling external APIs for information not contained in the model weights, accessing current information, code execution capabilities, and proprietary information sources.