🚀 Try Zilliz Cloud, the fully managed Milvus, for free—experience 10x faster performance! Try Now>>

Milvus
Zilliz
Home
  • User Guide
  • Home
  • Docs
  • User Guide

  • Schema & Data Fields

  • Number Field

Number Field

A number field is a scalar field that stores numeric values. These values can be whole numbers (integers) or decimal numbers (floating-point numbers). They are typically used to represent quantities, measurements, or any data that needs to be mathematically processed.

The table below describes the data types of number fields available in Milvus.

Field Type

Description

BOOL

Boolean type for storing true or false, suitable for describing binary states.

INT8

8-bit integer, suitable for storing small-range integer data.

INT16

16-bit integer, for medium-range integer data.

INT32

32-bit integer, ideal for general integer data storage like product quantities or user IDs.

INT64

64-bit integer, suitable for storing large-range data like timestamps or identifiers.

FLOAT

32-bit floating-point number, for data requiring general precision, such as ratings or temperature.

DOUBLE

64-bit double-precision floating-point number, for high-precision data like financial information or scientific calculations.

To declare a number field, simply set the datatype to one of the available numeric data types. For example, DataType.INT64 for an integer field or DataType.FLOAT for a floating-point field.

Milvus supports null values and default values for number fields. To enable these features, set nullable to True and default_value to a numeric value. For details, refer to Nullable & Default.

Add number field

To store numeric data, define a number field in your collection schema. Below is an example of a collection schema with two number fields:

  • age: stores integer data, allows null values, and has a default value of 18.

  • price: stores float data, allows null values, but does not have a default value.

If you set enable_dynamic_fields=True when defining the schema, Milvus allows you to insert scalar fields that were not defined in advance. However, this may increase the complexity of queries and management, potentially impacting performance. For more information, refer to Dynamic Field.

# Import necessary libraries
from pymilvus import MilvusClient, DataType

# Define server address
SERVER_ADDR = "http://localhost:19530"

# Create a MilvusClient instance
client = MilvusClient(uri=SERVER_ADDR)

# Define the collection schema
schema = client.create_schema(
    auto_id=False,
    enable_dynamic_fields=True,
)

# Add an INT64 field `age` that supports null values with default value 18
schema.add_field(field_name="age", datatype=DataType.INT64, nullable=True, default_value=18)
# Add a FLOAT field `price` that supports null values without default value
schema.add_field(field_name="price", datatype=DataType.FLOAT, nullable=True)
schema.add_field(field_name="pk", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="embedding", datatype=DataType.FLOAT_VECTOR, dim=3)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;

import io.milvus.v2.common.DataType;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;

MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
        .uri("http://localhost:19530")
        .build());
        
CreateCollectionReq.CollectionSchema schema = client.createSchema();
schema.setEnableDynamicField(true);

schema.addField(AddFieldReq.builder()
        .fieldName("age")
        .dataType(DataType.Int64)
        .isNullable(true)
        .defaultValue(18)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("price")
        .dataType(DataType.Float)
        .isNullable(true)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("pk")
        .dataType(DataType.Int64)
        .isPrimaryKey(true)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("embedding")
        .dataType(DataType.FloatVector)
        .dimension(3)
        .build());
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const schema = [
  {
    name: "age",
    data_type: DataType.Int64,
  },
  {
    name: "price",
    data_type: DataType.Float,
  },
  {
    name: "pk",
    data_type: DataType.Int64,
    is_primary_key: true,
  },
  {
    name: "embedding",
    data_type: DataType.FloatVector,
    dim: 3,
  },
];

import (
    "context"
    "fmt"

    "github.com/milvus-io/milvus/client/v2/column"
    "github.com/milvus-io/milvus/client/v2/entity"
    "github.com/milvus-io/milvus/client/v2/index"
    "github.com/milvus-io/milvus/client/v2/milvusclient"
)

ctx, cancel := context.WithCancel(context.Background())
defer cancel()

milvusAddr := "localhost:19530"

client, err := milvusclient.New(ctx, &milvusclient.ClientConfig{
    Address: milvusAddr,
})
if err != nil {
    fmt.Println(err.Error())
    // handle error
}
defer client.Close(ctx)

schema := entity.NewSchema()
schema.WithField(entity.NewField().
    WithName("pk").
    WithDataType(entity.FieldTypeInt64).
    WithIsPrimaryKey(true),
).WithField(entity.NewField().
    WithName("embedding").
    WithDataType(entity.FieldTypeFloatVector).
    WithDim(3),
).WithField(entity.NewField().
    WithName("price").
    WithDataType(entity.FieldTypeFloat).
    WithNullable(true),
).WithField(entity.NewField().
    WithName("age").
    WithDataType(entity.FieldTypeInt64).
    WithNullable(true).
    WithDefaultValueLong(18),
)
export int64Field='{
    "fieldName": "age",
    "dataType": "Int64"
}'

export floatField='{
    "fieldName": "price",
    "dataType": "Float"
}'

export pkField='{
    "fieldName": "pk",
    "dataType": "Int64",
    "isPrimary": true
}'

export vectorField='{
    "fieldName": "embedding",
    "dataType": "FloatVector",
    "elementTypeParams": {
        "dim": 3
    }
}'

export schema="{
    \"autoID\": false,
    \"fields\": [
        $int64Field,
        $floatField,
        $pkField,
        $vectorField
    ]
}"

Set index params

Indexing helps improve search and query performance. In Milvus, indexing is mandatory for vector fields but optional for scalar fields.

The following example creates indexes on the vector field embedding and the scalar field age, both using the AUTOINDEX index type. With this type, Milvus automatically selects the most suitable index based on the data type. You can also customize the index type and params for each field. For details, refer to Index Explained.

# Set index params

index_params = client.prepare_index_params()

# Index `age` with AUTOINDEX
index_params.add_index(
    field_name="age",
    index_type="AUTOINDEX",
    index_name="age_index"
)

# Index `embedding` with AUTOINDEX and specify similarity metric type
index_params.add_index(
    field_name="embedding",
    index_type="AUTOINDEX",  # Use automatic indexing to simplify complex index settings
    metric_type="COSINE"  # Specify similarity metric type, options include L2, COSINE, or IP
)
import io.milvus.v2.common.IndexParam;
import java.util.*;

List<IndexParam> indexes = new ArrayList<>();
indexes.add(IndexParam.builder()
        .fieldName("age")
        .indexType(IndexParam.IndexType.AUTOINDEX)
        .build());
        
indexes.add(IndexParam.builder()
        .fieldName("embedding")
        .indexType(IndexParam.IndexType.AUTOINDEX)
        .metricType(IndexParam.MetricType.COSINE)
        .build());
import { IndexType } from "@zilliz/milvus2-sdk-node";
const indexParams = [
  {
    field_name: "age",
    index_name: "inverted_index",
    index_type: IndexType.AUTOINDEX,
  },
  {
    field_name: "embedding",
    metric_type: "COSINE",
    index_type: IndexType.AUTOINDEX,
  },
];
indexOption1 := milvusclient.NewCreateIndexOption("my_collection", "embedding",
    index.NewAutoIndex(index.MetricType(entity.IP)))
indexOption2 := milvusclient.NewCreateIndexOption("my_collection", "age",
    index.NewInvertedIndex())
export indexParams='[
        {
            "fieldName": "age",
            "indexName": "inverted_index",
            "indexType": "AUTOINDEX"
        },
        {
            "fieldName": "embedding",
            "metricType": "COSINE",
            "indexType": "AUTOINDEX"
        }
    ]'

Create collection

Once the schema and indexes are defined, create a collection that includes number fields.

# Create Collection
client.create_collection(
    collection_name="my_collection",
    schema=schema,
    index_params=index_params
)
CreateCollectionReq requestCreate = CreateCollectionReq.builder()
        .collectionName("my_collection")
        .collectionSchema(schema)
        .indexParams(indexes)
        .build();
client.createCollection(requestCreate);
client.create_collection({
    collection_name: "my_collection",
    schema: schema,
    index_params: indexParams
})
err = client.CreateCollection(ctx,
    milvusclient.NewCreateCollectionOption("my_collection", schema).
        WithIndexOptions(indexOption1, indexOption2))
if err != nil {
    fmt.Println(err.Error())
    // handle error
}
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
    \"collectionName\": \"my_collection\",
    \"schema\": $schema,
    \"indexParams\": $indexParams
}"

Insert data

After creating the collection, insert entities that match the schema.

# Sample data
data = [
    {"age": 25, "price": 99.99, "pk": 1, "embedding": [0.1, 0.2, 0.3]},
    {"age": 30, "pk": 2, "embedding": [0.4, 0.5, 0.6]}, # `price` field is missing, which should be null
    {"age": None, "price": None, "pk": 3, "embedding": [0.2, 0.3, 0.1]},  # `age` should default to 18, `price` is null
    {"age": 45, "price": None, "pk": 4, "embedding": [0.9, 0.1, 0.4]},  # `price` is null
    {"age": None, "price": 59.99, "pk": 5, "embedding": [0.8, 0.5, 0.3]},  # `age` should default to 18
    {"age": 60, "price": None, "pk": 6, "embedding": [0.1, 0.6, 0.9]}  # `price` is null
]

client.insert(
    collection_name="my_collection",
    data=data
)
import com.google.gson.Gson;
import com.google.gson.JsonObject;

import io.milvus.v2.service.vector.request.InsertReq;
import io.milvus.v2.service.vector.response.InsertResp;

List<JsonObject> rows = new ArrayList<>();
Gson gson = new Gson();
rows.add(gson.fromJson("{\"age\": 25, \"price\": 99.99, \"pk\": 1, \"embedding\": [0.1, 0.2, 0.3]}", JsonObject.class));
rows.add(gson.fromJson("{\"age\": 30, \"pk\": 2, \"embedding\": [0.4, 0.5, 0.6]}", JsonObject.class));
rows.add(gson.fromJson("{\"age\": null, \"price\": null, \"pk\": 3, \"embedding\": [0.2, 0.3, 0.1]}", JsonObject.class));
rows.add(gson.fromJson("{\"age\": 45, \"price\": null, \"pk\": 4, \"embedding\": [0.9, 0.1, 0.4]}", JsonObject.class));
rows.add(gson.fromJson("{\"age\": null, \"price\": 59.99, \"pk\": 5, \"embedding\": [0.8, 0.5, 0.3]}", JsonObject.class));
rows.add(gson.fromJson("{\"age\": 60, \"price\": null, \"pk\": 6, \"embedding\": [0.1, 0.6, 0.9]}", JsonObject.class));

InsertResp insertR = client.insert(InsertReq.builder()
        .collectionName("my_collection")
        .data(rows)
        .build());
const data = [
  { age: 25, price: 99.99, pk: 1, embedding: [0.1, 0.2, 0.3] },
  { age: 30, price: 149.5, pk: 2, embedding: [0.4, 0.5, 0.6] },
  { age: 35, price: 199.99, pk: 3, embedding: [0.7, 0.8, 0.9] },
];

client.insert({
  collection_name: "my_collection",
  data: data,
});

column1, _ := column.NewNullableColumnFloat("price",
    []float32{99.99, 59.99},
    []bool{true, false, false, false, true, false})
column2, _ := column.NewNullableColumnInt64("age",
    []int64{25, 30, 45, 60},
    []bool{true, true, false, true, false, true})

_, err = client.Insert(ctx, milvusclient.NewColumnBasedInsertOption("my_collection").
    WithInt64Column("pk", []int64{1, 2, 3, 4, 5, 6}).
    WithFloatVectorColumn("embedding", 3, [][]float32{
        {0.1, 0.2, 0.3},
        {0.4, 0.5, 0.6},
        {0.2, 0.3, 0.1},
        {0.9, 0.1, 0.4},
        {0.8, 0.5, 0.3},
        {0.1, 0.6, 0.9},
    }).
    WithColumns(column1, column2),
)
if err != nil {
    fmt.Println(err.Error())
    // handle err
}
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/insert" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "data": [
        {"age": 25, "price": 99.99, "pk": 1, "embedding": [0.1, 0.2, 0.3]},
        {"age": 30, "price": 149.50, "pk": 2, "embedding": [0.4, 0.5, 0.6]},
        {"age": 35, "price": 199.99, "pk": 3, "embedding": [0.7, 0.8, 0.9]}       
    ],
    "collectionName": "my_collection"
}'

Query with filter expressions

After inserting entities, use the query method to retrieve entities that match the specified filter expressions.

To retrieve entities where the age is greater than 30:

filter = 'age > 30'

res = client.query(
    collection_name="my_collection",
    filter=filter,
    output_fields=["age", "price", "pk"]
)

print(res)

# Example output:
# data: [
#     "{'age': 45, 'price': None, 'pk': 4}",
#     "{'age': 60, 'price': None, 'pk': 6}"
# ]
import io.milvus.v2.service.vector.request.QueryReq;
import io.milvus.v2.service.vector.response.QueryResp;

String filter = "age > 30";

QueryResp resp = client.query(QueryReq.builder()
        .collectionName("my_collection")
        .filter(filter)
        .outputFields(Arrays.asList("age", "price", "pk"))
        .build());
System.out.println(resp.getQueryResults());

// Output
//
// [
//    QueryResp.QueryResult(entity={price=null, pk=4, age=45}), 
//    QueryResp.QueryResult(entity={price=null, pk=6, age=60})
// ]
client.query({
    collection_name: 'my_collection',
    filter: 'age > 30',
    output_fields: ['age', 'price', 'pk']
});
filter := "age > 30"
queryResult, err := client.Query(ctx, milvusclient.NewQueryOption("my_collection").
    WithFilter(filter).
    WithOutputFields("pk", "age", "price"))
if err != nil {
    fmt.Println(err.Error())
    // handle error
}
fmt.Println("pk", queryResult.GetColumn("pk").FieldData().GetScalars())
fmt.Println("age", queryResult.GetColumn("age").FieldData().GetScalars())
fmt.Println("price", queryResult.GetColumn("price").FieldData().GetScalars())
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "my_collection",
    "filter": "age > 30",
    "outputFields": ["age","price", "pk"]
}'

## {"code":0,"cost":0,"data":[{"age":30,"pk":2,"price":149.5},{"age":35,"pk":3,"price":199.99}]}

To retrieve entities where the price is null:

filter = 'price is null'

res = client.query(
    collection_name="my_collection",
    filter=filter,
    output_fields=["age", "price", "pk"]
)

print(res)

# Example output:
# data: [
#     "{'age': 30, 'price': None, 'pk': 2}",
#     "{'age': 18, 'price': None, 'pk': 3}",
#     "{'age': 45, 'price': None, 'pk': 4}",
#     "{'age': 60, 'price': None, 'pk': 6}"
# ]
String filter = "price is null";

QueryResp resp = client.query(QueryReq.builder()
        .collectionName("my_collection")
        .filter(filter)
        .outputFields(Arrays.asList("age", "price", "pk"))
        .build());
System.out.println(resp.getQueryResults());

// Output
// [
//    QueryResp.QueryResult(entity={price=null, pk=2, age=30}), 
//    QueryResp.QueryResult(entity={price=null, pk=3, age=18}), 
//    QueryResp.QueryResult(entity={price=null, pk=4, age=45}), 
//    QueryResp.QueryResult(entity={price=null, pk=6, age=60})
// ]
// node
const filter = 'price is null';

const res = await client.query({
    collection_name:"my_collection",
    filter:filter,
    output_fields=["age", "price", "pk"]
});

console.log(res);

// Example output:
// data: [
//     "{'age': 18, 'price': None, 'pk': 3}",
//     "{'age': 18, 'price': 59.99, 'pk': 5}"
// ]
filter = "price is null"
queryResult, err = client.Query(ctx, milvusclient.NewQueryOption("my_collection").
    WithFilter(filter).
    WithOutputFields("pk", "age", "price"))
if err != nil {
    fmt.Println(err.Error())
    // handle error
}
fmt.Println("pk", queryResult.GetColumn("pk"))
fmt.Println("age", queryResult.GetColumn("age"))
fmt.Println("price", queryResult.GetColumn("price"))
# restful
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
  "collectionName": "my_collection",
  "filter": "price is null",
  "outputFields": ["age", "price", "pk"]
}'

To retrieve entities where age has the value 18, use the following expression below. As the default value of age is 18, the expected result should include entities with age explicitly set to 18 or with age set to null.

filter = 'age == 18'

res = client.query(
    collection_name="my_collection",
    filter=filter,
    output_fields=["age", "price", "pk"]
)

print(res)

# Example output:
# data: [
#     "{'age': 18, 'price': None, 'pk': 3}",
#     "{'age': 18, 'price': 59.99, 'pk': 5}"
# ]
String filter = "age == 18";

QueryResp resp = client.query(QueryReq.builder()
        .collectionName("my_collection")
        .filter(filter)
        .outputFields(Arrays.asList("age", "price", "pk"))
        .build());
System.out.println(resp.getQueryResults());

// Output
// [
//    QueryResp.QueryResult(entity={price=null, pk=3, age=18}), 
//    QueryResp.QueryResult(entity={price=59.99, pk=5, age=18})
// ]
// node
const filter = 'age == 18';

const res = await client.query({
    collection_name:"my_collection",
    filter:filter,
    output_fields=["age", "price", "pk"]
});

console.log(res);

// Example output:
// data: [
//     "{'age': 18, 'price': None, 'pk': 3}",
//     "{'age': 18, 'price': 59.99, 'pk': 5}"
// ]
filter = "age == 18"
queryResult, err = client.Query(ctx, milvusclient.NewQueryOption("my_collection").
    WithFilter(filter).
    WithOutputFields("pk", "age", "price"))
if err != nil {
    fmt.Println(err.Error())
    // handle error
}
fmt.Println("pk", queryResult.GetColumn("pk"))
fmt.Println("age", queryResult.GetColumn("age"))
fmt.Println("price", queryResult.GetColumn("price"))
# restful
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
  "collectionName": "my_collection",
  "filter": "age == 18",
  "outputFields": ["age", "price", "pk"]
}'

Vector search with filter expressions

In addition to basic number field filtering, you can combine vector similarity searches with number field filters. For example, the following code shows how to add a number field filter to a vector search:

filter = "25 <= age <= 35"

res = client.search(
    collection_name="my_collection",
    data=[[0.3, -0.6, 0.1]],
    limit=5,
    search_params={"params": {"nprobe": 10}},
    output_fields=["age","price"],
    filter=filter
)

print(res)

# Example output:
# data: [
#     "[{'id': 2, 'distance': -0.2016308456659317, 'entity': {'age': 30, 'price': None}}, {'id': 1, 'distance': -0.23643313348293304, 'entity': {'age': 25, 'price': 99.98999786376953}}]"
# ]
import io.milvus.v2.service.vector.request.SearchReq;
import io.milvus.v2.service.vector.request.data.FloatVec;
import io.milvus.v2.service.vector.response.SearchResp;

String filter = "25 <= age <= 35";

SearchResp resp = client.search(SearchReq.builder()
        .collectionName("my_collection")
        .annsField("embedding")
        .data(Collections.singletonList(new FloatVec(new float[]{0.3f, -0.6f, 0.1f})))
        .topK(5)
        .outputFields(Arrays.asList("age", "price"))
        .filter(filter)
        .build());

System.out.println(resp.getSearchResults());

// Output
//
// [
//   [
//     SearchResp.SearchResult(entity={price=null, age=30}, score=-0.20163085, id=2),
//     SearchResp.SearchResult(entity={price=99.99, age=25}, score=-0.23643313, id=1)
//   ]
// ]
await client.search({
    collection_name: 'my_collection',
    data: [0.3, -0.6, 0.1],
    limit: 5,
    output_fields: ['age', 'price'],
    filter: '25 <= age <= 35'
});
queryVector := []float32{0.3, -0.6, 0.1}
filter = "25 <= age <= 35"

annParam := index.NewCustomAnnParam()
annParam.WithExtraParam("nprobe", 10)
resultSets, err := client.Search(ctx, milvusclient.NewSearchOption(
    "my_collection", // collectionName
    5,               // limit
    []entity.Vector{entity.FloatVector(queryVector)},
).WithANNSField("embedding").
    WithFilter(filter).
    WithAnnParam(annParam).
    WithOutputFields("age", "price"))
if err != nil {
    fmt.Println(err.Error())
    // handle error
}

for _, resultSet := range resultSets {
    fmt.Println("IDs: ", resultSet.IDs.FieldData().GetScalars())
    fmt.Println("Scores: ", resultSet.Scores)
    fmt.Println("age: ", resultSet.GetColumn("age"))
    fmt.Println("price: ", resultSet.GetColumn("price"))
}
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "my_collection",
    "data": [
        [0.3, -0.6, 0.1]
    ],
    "annsField": "embedding",
    "limit": 5,
    "outputFields": ["age", "price"]
}'

## {"code":0,"cost":0,"data":[{"age":35,"distance":-0.19054288,"id":3,"price":199.99},{"age":30,"distance":-0.20163085,"id":2,"price":149.5},{"age":25,"distance":-0.2364331,"id":1,"price":99.99}]}

In this example, we first define a query vector and add a filter condition 25 <= age <= 35 during the search. This ensures that the search results are not only similar to the query vector but also meet the specified age range. For more information, refer to Filtering.

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

Was this page helpful?