Creare immediatamente una collezione
È possibile creare istantaneamente una collezione impostandone il nome e la dimensione del campo vettoriale. Milvus indicizza automaticamente il campo vettoriale e carica la collezione al momento della creazione. Questa pagina mostra come creare una collezione istantanea con le impostazioni predefinite.
Panoramica
Una collezione è una tabella bidimensionale con colonne fisse e righe variabili. Ogni colonna rappresenta un campo e ogni riga rappresenta un'entità. Per implementare questa gestione strutturale dei dati è necessario uno schema. Ogni entità da inserire deve soddisfare i vincoli definiti nello schema.
Le applicazioni AIGC di solito utilizzano database vettoriali come base di conoscenza per gestire i dati generati durante l'interazione tra gli utenti e i Large Language Models (LLM). Tali basi di conoscenza sono pressoché simili. Per accelerare l'uso dei cluster Milvus in questi scenari, è disponibile un metodo istantaneo per creare una raccolta con solo due parametri, ovvero il nome della raccolta e la dimensionalità del campo vettoriale.
Quando si crea una collezione istantanea con le impostazioni predefinite, si applicano le seguenti impostazioni.
I campi primari e vettoriali vengono aggiunti allo schema(id e vettore).
Il campo primario accetta numeri interi e disattiva l'AutoId.
Il campo vettore accetta incorporazioni vettoriali fluttuanti.
AUTOINDEX viene utilizzato per creare un indice sul campo vettore.
COSINE è usato per misurare le somiglianze tra le incorporazioni vettoriali.
Il campo dinamico delle riserve, denominato $meta, è abilitato per salvare campi non definiti da schemi e i loro valori in coppie chiave-valore.
La collezione viene caricata automaticamente al momento della creazione.
Per i dettagli sulle terminologie di cui sopra, fare riferimento a Raccolta spiegata.
È bene notare che la creazione immediata di una raccolta con le impostazioni predefinite non è adatta a tutti gli scenari. Si consiglia di familiarizzare con la procedura di creazione di una collezione comune, in modo da comprendere meglio le capacità di Milvus.
Impostazione rapida
In questo modo, è possibile creare immediatamente una collezione con il solo nome della collezione e la dimensione del campo vettoriale.
from pymilvus import MilvusClient, DataType
CLUSTER_ENDPOINT = "http://localhost:19530"
TOKEN = "root:Milvus"
# 1. Set up a Milvus client
client = MilvusClient(
uri=CLUSTER_ENDPOINT,
token=TOKEN
)
# 2. Create a collection in quick setup mode
client.create_collection(
collection_name="quick_setup",
dimension=5
)
res = client.get_load_state(
collection_name="quick_setup"
)
print(res)
# Output
#
# {
# "state": "<LoadState: Loaded>"
# }
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.collection.request.GetLoadStateReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;
String CLUSTER_ENDPOINT = "http://localhost:19530";
String TOKEN = "root:Milvus";
// 1. Connect to Milvus server
ConnectConfig connectConfig = ConnectConfig.builder()
.uri(CLUSTER_ENDPOINT)
.token(TOKEN)
.build();
MilvusClientV2 client = new MilvusClientV2(connectConfig);
// 2. Create a collection in quick setup mode
CreateCollectionReq quickSetupReq = CreateCollectionReq.builder()
.collectionName("quick_setup")
.dimension(5)
.build();
client.createCollection(quickSetupReq);
GetLoadStateReq quickSetupLoadStateReq = GetLoadStateReq.builder()
.collectionName("quick_setup")
.build();
Boolean res = client.getLoadState(quickSetupLoadStateReq);
System.out.println(res);
// Output:
// true
// 1. Set up a Milvus Client
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});
// 2. Create a collection in quick setup mode
let res = await client.createCollection({
collection_name: "quick_setup",
dimension: 5,
});
console.log(res.error_code)
// Output
//
// Success
//
res = await client.getLoadState({
collection_name: "quick_setup"
})
console.log(res.state)
// Output
//
// LoadStateLoaded
//
// Go 缺失
export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "quick_setup",
"dimension": 5
}'
# {
# "code": 0,
# "data": {}
# }
Impostazione rapida con campi personalizzati
Se il tipo di metrica, i nomi dei campi e i tipi di dati predefiniti non soddisfano le vostre esigenze, potete regolare queste impostazioni come segue.
from pymilvus import MilvusClient, DataType
CLUSTER_ENDPOINT = "http://localhost:19530"
TOKEN = "root:Milvus"
# 1. Set up a Milvus client
client = MilvusClient(
uri=CLUSTER_ENDPOINT,
token=TOKEN
)
# 2. Create a collection in quick setup mode
client.create_collection(
collection_name="custom_quick_setup",
dimension=5,
primary_field_name="my_id",
id_type="string",
vector_field_name="my_vector",
metric_type="L2",
auto_id=True,
max_length=512
)
res = client.get_load_state(
collection_name="custom_quick_setup"
)
print(res)
# Output
#
# {
# "state": "<LoadState: Loaded>"
# }
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.collection.request.GetLoadStateReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;
String CLUSTER_ENDPOINT = "http://localhost:19530";
String TOKEN = "root:Milvus";
// 1. Connect to Milvus server
ConnectConfig connectConfig = ConnectConfig.builder()
.uri(CLUSTER_ENDPOINT)
.token(TOKEN)
.build();
MilvusClientV2 client = new MilvusClientV2(connectConfig);
// 2. Create a collection in quick setup mode
CreateCollectionReq customQuickSetupReq = CreateCollectionReq.builder()
.collectionName("custom_quick_setup")
.dimension(5)
.primaryFieldName("my_id")
.idType(DataType.VarChar)
.maxLength(512)
.vectorFieldName("my_vector")
.metricType("L2")
.autoID(true)
.build();
client.createCollection(customQuickSetupReq);
GetLoadStateReq customQuickSetupLoadStateReq = GetLoadStateReq.builder()
.collectionName("custom_quick_setup")
.build();
Boolean res = client.getLoadState(customQuickSetupLoadStateReq);
System.out.println(res);
// Output:
// true
// 1. Set up a Milvus Client
const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});
// 2. Create a collection in quick setup mode
let res = await client.createCollection({
collection_name: "custom_quick_setup",
dimension: 5,
primary_field_name: "my_id",
id_type: "Varchar",
max_length: 512,
vector_field_name: "my_vector",
metric_type: "L2",
auto_id: true
});
console.log(res.error_code)
// Output
//
// Success
//
res = await client.getLoadState({
collection_name: "custom_quick_setup"
})
console.log(res.state)
// Output
//
// LoadStateLoaded
//
// Go 缺失
export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "custom_quick_setup",
"dimension": 5,
"primaryFieldName": "my_id",
"idType": "VarChar",
"vectorFieldName": "my_vector",
"metricType": "L2",
"autoId": true,
"params": {
"max_length": "512"
}
}'
Se le raccolte create con le due modalità precedenti non soddisfano ancora le vostre esigenze, potete seguire la procedura descritta in Crea raccolta.