🚀 Coba Zilliz Cloud, Milvus yang sepenuhnya terkelola, secara gratis—rasakan performa 10x lebih cepat! Coba Sekarang>>

milvus-logo
LFAI
Beranda
  • Panduan Pengguna
  • Home
  • Docs
  • Panduan Pengguna

  • Bidang Skema & Data

  • Dapat dibatalkan & Default

Dapat dinolkan & Default

Milvus memungkinkan Anda untuk mengatur atribut nullable dan nilai default untuk field skalar, kecuali field utama. Untuk field yang ditandai sebagai nullable=True, Anda dapat melewatkan field tersebut ketika memasukkan data, atau mengaturnya secara langsung ke nilai nol, dan sistem akan memperlakukannya sebagai nilai nol tanpa menyebabkan kesalahan. Ketika sebuah field memiliki nilai default, sistem akan secara otomatis menerapkan nilai ini jika tidak ada data yang ditentukan untuk field tersebut selama penyisipan.

Nilai default dan atribut yang dapat dinolkan menyederhanakan migrasi data dari sistem basis data lain ke Milvus dengan mengizinkan penanganan kumpulan data dengan nilai nol dan mempertahankan pengaturan nilai default. Ketika membuat koleksi, Anda juga dapat mengaktifkan nullable atau mengatur nilai default untuk field yang nilainya tidak pasti.

Batas

  • Hanya bidang skalar, tidak termasuk bidang utama, yang mendukung nilai default dan atribut nullable.

  • Bidang JSON dan Array tidak mendukung nilai default.

  • Nilai default atau atribut nullable hanya dapat dikonfigurasikan selama pembuatan koleksi dan tidak dapat dimodifikasi setelahnya.

  • Bidang skalar dengan atribut nullable yang diaktifkan tidak dapat digunakan sebagai group_by_field di Pencarian Pengelompokan. Untuk informasi lebih lanjut tentang pengelompokan pencarian, lihat Mengelompokkan Pencarian.

  • Bidang yang ditandai sebagai nullable tidak dapat digunakan sebagai kunci partisi. Untuk informasi lebih lanjut tentang kunci partisi, lihat Menggunakan Kunci Partisi.

  • Saat membuat indeks pada bidang skalar dengan atribut nullable diaktifkan, nilai nol akan dikecualikan dari indeks.

Atribut yang dapat dinolkan

Atribut nullable memungkinkan Anda menyimpan nilai null dalam koleksi, sehingga memberikan fleksibilitas saat menangani data yang tidak diketahui.

Mengatur atribut yang dapat dinolkan

Saat membuat koleksi, gunakan nullable=True untuk menetapkan bidang yang dapat dinullkan (defaultnya adalah False). Contoh berikut ini membuat koleksi bernama user_profiles_null dan menetapkan bidang age sebagai nullable.

from pymilvus import MilvusClient, DataType

client = MilvusClient(uri='http://localhost:19530')

# Define collection schema
schema = client.create_schema(
    auto_id=False,
    enable_dynamic_schema=True,
)

schema.add_field(field_name="id", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=5)
schema.add_field(field_name="age", datatype=DataType.INT64, nullable=True) # Nullable field

# Set index params
index_params = client.prepare_index_params()
index_params.add_index(field_name="vector", index_type="IVF_FLAT", metric_type="L2", params={ "nlist": 128 })

# Create collection
client.create_collection(collection_name="user_profiles_null", schema=schema, index_params=index_params)

import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.common.DataType;
import io.milvus.v2.common.IndexParam;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;

import java.util.*;

MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
        .uri("http://localhost:19530")
        .build());
        
CreateCollectionReq.CollectionSchema schema = client.createSchema();
schema.setEnableDynamicField(true);

schema.addField(AddFieldReq.builder()
        .fieldName("id")
        .dataType(DataType.Int64)
        .isPrimaryKey(true)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("vector")
        .dataType(DataType.FloatVector)
        .dimension(5)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("age")
        .dataType(DataType.Int64)
        .isNullable(true)
        .build());

List<IndexParam> indexes = new ArrayList<>();
Map<String,Object> extraParams = new HashMap<>();
extraParams.put("nlist", 128);
indexes.add(IndexParam.builder()
        .fieldName("vector")
        .indexType(IndexParam.IndexType.IVF_FLAT)
        .metricType(IndexParam.MetricType.L2)
        .extraParams(extraParams)
        .build());

CreateCollectionReq requestCreate = CreateCollectionReq.builder()
        .collectionName("user_profiles_null")
        .collectionSchema(schema)
        .indexParams(indexes)
        .build();
client.createCollection(requestCreate);

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const client = new MilvusClient({
  address: "http://localhost:19530",
  token: "root:Milvus",
});

await client.createCollection({
  collection_name: "user_profiles_null",
  schema: [
    {
      name: "id",
      is_primary_key: true,
      data_type: DataType.int64,
    },
    { name: "vector", data_type: DataType.Int64, dim: 5 },

    { name: "age", data_type: DataType.FloatVector, nullable: true },
  ],

  index_params: [
    {
      index_name: "vector_inde",
      field_name: "vector",
      metric_type: MetricType.L2,
      index_type: IndexType.AUTOINDEX,
    },
  ],
});


export pkField='{
    "fieldName": "id",
    "dataType": "Int64",
    "isPrimary": true
}'

export vectorField='{
    "fieldName": "vector",
    "dataType": "FloatVector",
    "elementTypeParams": {
        "dim": 5
    }
}'

export nullField='{
    "fieldName": "age",
    "dataType": "Int64",
    "nullable": true
}'

export schema="{
    \"autoID\": false,
    \"fields\": [
        $pkField,
        $vectorField,
        $nullField
    ]
}"

export indexParams='[
        {
            "fieldName": "vector",
            "metricType": "L2",
            "indexType": "IVF_FLAT",
            "params":{"nlist": 128}
        }
    ]'

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
    \"collectionName\": \"user_profiles_null\",
    \"schema\": $schema,
    \"indexParams\": $indexParams
}"

Menyisipkan entitas

Ketika Anda memasukkan data ke dalam bidang yang dapat dinullkan, masukkan null atau hilangkan bidang ini secara langsung.

data = [
    {"id": 1, "vector": [0.1, 0.2, 0.3, 0.4, 0.5], "age": 30},
    {"id": 2, "vector": [0.2, 0.3, 0.4, 0.5, 0.6], "age": None},
    {"id": 3, "vector": [0.3, 0.4, 0.5, 0.6, 0.7]}
]

client.insert(collection_name="user_profiles_null", data=data)

import com.google.gson.Gson;
import com.google.gson.JsonObject;

import io.milvus.v2.service.vector.request.InsertReq;
import io.milvus.v2.service.vector.response.InsertResp;

List<JsonObject> rows = new ArrayList<>();
Gson gson = new Gson();
rows.add(gson.fromJson("{\"id\": 1, \"vector\": [0.1, 0.2, 0.3, 0.4, 0.5], \"age\": 30}", JsonObject.class));
rows.add(gson.fromJson("{\"id\": 2, \"vector\": [0.2, 0.3, 0.4, 0.5, 0.6], \"age\": null}", JsonObject.class));
rows.add(gson.fromJson("{\"id\": 3, \"vector\": [0.3, 0.4, 0.5, 0.6, 0.7]}", JsonObject.class));

InsertResp insertR = client.insert(InsertReq.builder()
        .collectionName("user_profiles_null")
        .data(rows)
        .build());

const data = [
  { id: 1, vector: [0.1, 0.2, 0.3, 0.4, 0.5], age: 30 },
  { id: 2, vector: [0.2, 0.3, 0.4, 0.5, 0.6], age: null },
  { id: 3, vector: [0.3, 0.4, 0.5, 0.6, 0.7] },
];

client.insert({
  collection_name: "user_profiles_null",
  data: data,
});


curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/insert" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "data": [
        {"id": 1, "vector": [0.1, 0.2, 0.3, 0.4, 0.5], "age": 30},
        {"id": 2, "vector": [0.2, 0.3, 0.4, 0.5, 0.6], "age": null}, 
        {"id": 3, "vector": [0.3, 0.4, 0.5, 0.6, 0.7]} 
    ],
    "collectionName": "user_profiles_null"
}'

Penelusuran dan kueri dengan nilai null

Saat menggunakan metode search, jika sebuah bidang berisi nilai null, hasil pencarian akan mengembalikan bidang tersebut sebagai null.

res = client.search(
    collection_name="user_profiles_null",
    data=[[0.1, 0.2, 0.4, 0.3, 0.128]],
    limit=2,
    search_params={"params": {"nprobe": 16}},
    output_fields=["id", "age"]
)

print(res)

# Output
# data: ["[{'id': 1, 'distance': 0.15838398039340973, 'entity': {'age': 30, 'id': 1}}, {'id': 2, 'distance': 0.28278401494026184, 'entity': {'age': None, 'id': 2}}]"] 

import io.milvus.v2.service.vector.request.SearchReq;
import io.milvus.v2.service.vector.request.data.FloatVec;
import io.milvus.v2.service.vector.response.SearchResp;

Map<String,Object> params = new HashMap<>();
params.put("nprobe", 16);
SearchResp resp = client.search(SearchReq.builder()
        .collectionName("user_profiles_null")
        .annsField("vector")
        .data(Collections.singletonList(new FloatVec(new float[]{0.1f, 0.2f, 0.3f, 0.4f, 0.5f})))
        .topK(2)
        .searchParams(params)
        .outputFields(Arrays.asList("id", "age"))
        .build());

System.out.println(resp.getSearchResults());

// Output
//
// [[SearchResp.SearchResult(entity={id=1, age=30}, score=0.0, id=1), SearchResp.SearchResult(entity={id=2, age=null}, score=0.050000004, id=2)]]

client.search({
    collection_name: 'user_profiles_null',
    data: [0.3, -0.6, 0.1, 0.3, 0.5],
    limit: 2,
    output_fields: ['age', 'id'],
    filter: '25 <= age <= 35',
    params: {
        nprobe: 16
    }
});

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "user_profiles_null",
    "data": [
        [0.1, -0.2, 0.3, 0.4, 0.5]
    ],
    "annsField": "vector",
    "limit": 5,
    "outputFields": ["id", "age"]
}'

#{"code":0,"cost":0,"data":[{"age":30,"distance":0.16000001,"id":1},{"age":null,"distance":0.28999996,"id":2},{"age":null,"distance":0.52000004,"id":3}]}

Ketika Anda menggunakan metode query untuk pemfilteran skalar, hasil pemfilteran untuk nilai null akan bernilai salah, yang mengindikasikan bahwa nilai tersebut tidak akan dipilih.

# Reviewing previously inserted data:
# {"id": 1, "vector": [0.1, 0.2, ..., 0.128], "age": 30}
# {"id": 2, "vector": [0.2, 0.3, ..., 0.129], "age": None}
# {"id": 3, "vector": [0.3, 0.4, ..., 0.130], "age": None}  # Omitted age  column is treated as None

results = client.query(
    collection_name="user_profiles_null",
    filter="age >= 0",
    output_fields=["id", "age"]
)

# Example output:
# [
#     {"id": 1, "age": 30}
# ]
# Note: Entities with `age` as `null` (id 2 and 3) will not appear in the result.

import io.milvus.v2.service.vector.request.QueryReq;
import io.milvus.v2.service.vector.response.QueryResp;

QueryResp resp = client.query(QueryReq.builder()
        .collectionName("user_profiles_null")
        .filter("age >= 0")
        .outputFields(Arrays.asList("id", "age"))
        .build());

System.out.println(resp.getQueryResults());

// Output
//
// [QueryResp.QueryResult(entity={id=1, age=30})]

const results = await client.query(
    collection_name: "user_profiles_null",
    filter: "age >= 0",
    output_fields: ["id", "age"]
);

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "user_profiles_null",
    "filter": "age >= 0",
    "outputFields": ["id", "age"]
}'

# {"code":0,"cost":0,"data":[{"age":30,"id":1}]}

Untuk mengembalikan entitas dengan nilai nol, kueri tanpa kondisi pemfilteran skalar sebagai berikut:

null_results = client.query(
    collection_name="user_profiles_null",
    filter="", # Query without any filtering condition
    output_fields=["id", "age"]
)

# Example output:
# [{"id": 2, "age": None}, {"id": 3, "age": None}]

QueryResp resp = client.query(QueryReq.builder()
        .collectionName("user_profiles_null")
        .filter("")
        .outputFields(Arrays.asList("id", "age"))
        .limit(10)
        .build());

System.out.println(resp.getQueryResults());

const results = await client.query(
    collection_name: "user_profiles_null",
    filter: "",
    output_fields: ["id", "age"]
);

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "user_profiles_null",
    "expr": "",
    "outputFields": ["id", "age"]
}'

# {"code":0,"cost":0,"data":[{"age":30,"id":1},{"age":null,"id":2},{"age":null,"id":3}]}

Nilai default

Nilai default adalah nilai yang telah ditetapkan sebelumnya yang ditetapkan ke bidang skalar. Jika Anda tidak memberikan nilai untuk bidang dengan nilai default selama penyisipan, sistem secara otomatis menggunakan nilai default.

Mengatur nilai default

Saat membuat koleksi, gunakan parameter default_value untuk menentukan nilai default untuk suatu bidang. Contoh berikut ini menunjukkan cara menetapkan nilai default dari age menjadi 18 dan status menjadi "active".

schema = client.create_schema(
    auto_id=False,
    enable_dynamic_schema=True,
)

schema.add_field(field_name="id", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=5)
schema.add_field(field_name="age", datatype=DataType.INT64, default_value=18)
schema.add_field(field_name="status", datatype=DataType.VARCHAR, default_value="active", max_length=10)

index_params = client.prepare_index_params()
index_params.add_index(field_name="vector", index_type="IVF_FLAT", metric_type="L2", params={ "nlist": 128 })

client.create_collection(collection_name="user_profiles_default", schema=schema, index_params=index_params)

import io.milvus.v2.common.DataType;
import io.milvus.v2.common.IndexParam;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;

import java.util.*;

CreateCollectionReq.CollectionSchema schema = client.createSchema();
schema.setEnableDynamicField(true);

schema.addField(AddFieldReq.builder()
        .fieldName("id")
        .dataType(DataType.Int64)
        .isPrimaryKey(true)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("vector")
        .dataType(DataType.FloatVector)
        .dimension(5)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("age")
        .dataType(DataType.Int64)
        .defaultValue(18L)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("status")
        .dataType(DataType.VarChar)
        .maxLength(10)
        .defaultValue("active")
        .build());

List<IndexParam> indexes = new ArrayList<>();
Map<String,Object> extraParams = new HashMap<>();
extraParams.put("nlist", 128);
indexes.add(IndexParam.builder()
        .fieldName("vector")
        .indexType(IndexParam.IndexType.IVF_FLAT)
        .metricType(IndexParam.MetricType.L2)
        .extraParams(extraParams)
        .build());

CreateCollectionReq requestCreate = CreateCollectionReq.builder()
        .collectionName("user_profiles_default")
        .collectionSchema(schema)
        .indexParams(indexes)
        .build();
client.createCollection(requestCreate);

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const client = new MilvusClient({
  address: "http://localhost:19530",
  token: "root:Milvus",
});

await client.createCollection({
  collection_name: "user_profiles_default",
  schema: [
    {
      name: "id",
      is_primary_key: true,
      data_type: DataType.int64,
    },
    { name: "vector", data_type: DataType.FloatVector, dim: 5 },
    { name: "age", data_type: DataType.Int64, default_value: 18 },
    { name: 'status', data_type: DataType.VarChar, max_length: 30, default_value: 'active'},
  ],

  index_params: [
    {
      index_name: "vector_inde",
      field_name: "vector",
      metric_type: MetricType.L2,
      index_type: IndexType.IVF_FLAT,
    },
  ],
});


export pkField='{
    "fieldName": "id",
    "dataType": "Int64",
    "isPrimary": true
}'

export vectorField='{
    "fieldName": "vector",
    "dataType": "FloatVector",
    "elementTypeParams": {
        "dim": 5
    }
}'

export defaultValueField1='{
    "fieldName": "age",
    "dataType": "Int64",
    "defaultValue": 18
}'

export defaultValueField2='{
    "fieldName": "status",
    "dataType": "VarChar",
    "defaultValue": "active",
    "elementTypeParams": {
        "max_length": 10
    }
}'

export schema="{
    \"autoID\": false,
    \"fields\": [
        $pkField,
        $vectorField,
        $defaultValueField1,
        $defaultValueField2
    ]
}"

export indexParams='[
        {
            "fieldName": "vector",
            "metricType": "L2",
            "indexType": "IVF_FLAT",
            "params":{"nlist": 128}
        }
    ]'

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
    \"collectionName\": \"user_profiles_default\",
    \"schema\": $schema,
    \"indexParams\": $indexParams
}"

Menyisipkan entitas

Saat memasukkan data, jika Anda menghilangkan bidang dengan nilai default atau mengatur nilainya menjadi nol, sistem akan menggunakan nilai default.

data = [
    {"id": 1, "vector": [0.1, 0.2, ..., 0.128], "age": 30, "status": "premium"},
    {"id": 2, "vector": [0.2, 0.3, ..., 0.129]},
    {"id": 3, "vector": [0.3, 0.4, ..., 0.130], "age": 25, "status": None}, 
    {"id": 4, "vector": [0.4, 0.5, ..., 0.131], "age": None, "status": "inactive"} 
]

client.insert(collection_name="user_profiles_default", data=data)

import com.google.gson.Gson;
import com.google.gson.JsonObject;

import io.milvus.v2.service.vector.request.InsertReq;
import io.milvus.v2.service.vector.response.InsertResp;

List<JsonObject> rows = new ArrayList<>();
Gson gson = new Gson();
rows.add(gson.fromJson("{\"id\": 1, \"vector\": [0.1, 0.2, 0.3, 0.4, 0.5], \"age\": 30, \"status\": \"premium\"}", JsonObject.class));
rows.add(gson.fromJson("{\"id\": 2, \"vector\": [0.2, 0.3, 0.4, 0.5, 0.6]}", JsonObject.class));
rows.add(gson.fromJson("{\"id\": 3, \"vector\": [0.3, 0.4, 0.5, 0.6, 0.7], \"age\": 25, \"status\": null}", JsonObject.class));
rows.add(gson.fromJson("{\"id\": 4, \"vector\": [0.4, 0.5, 0.6, 0.7, 0.8], \"age\": null, \"status\": \"inactive\"}", JsonObject.class));

InsertResp insertR = client.insert(InsertReq.builder()
        .collectionName("user_profiles_default")
        .data(rows)
        .build());

const data = [
    {"id": 1, "vector": [0.1, 0.2, 0.3, 0.4, 0.5], "age": 30, "status": "premium"},
    {"id": 2, "vector": [0.2, 0.3, 0.4, 0.5, 0.6]}, 
    {"id": 3, "vector": [0.3, 0.4, 0.5, 0.6, 0.7], "age": 25, "status": null}, 
    {"id": 4, "vector": [0.4, 0.5, 0.6, 0.7, 0.8], "age": null, "status": "inactive"}  
];

client.insert({
  collection_name: "user_profiles_default",
  data: data,
});

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/insert" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "data": [
        {"id": 1, "vector": [0.1, 0.2, 0.3, 0.4, 0.5], "age": 30, "status": "premium"},
        {"id": 2, "vector": [0.2, 0.3, 0.4, 0.5, 0.6]},
        {"id": 3, "vector": [0.3, 0.4, 0.5, 0.6, 0.7], "age": 25, "status": null}, 
        {"id": 4, "vector": [0.4, 0.5, 0.6, 0.7, 0.8], "age": null, "status": "inactive"}      
    ],
    "collectionName": "user_profiles_default"
}'

Untuk informasi lebih lanjut tentang bagaimana pengaturan nilai nol dan nilai default berlaku, lihat Aturan yang berlaku.

Pencarian dan kueri dengan nilai default

Entitas yang berisi nilai default diperlakukan sama seperti entitas lain selama pencarian vektor dan pemfilteran skalar. Anda dapat menyertakan nilai default sebagai bagian dari operasi search dan query.

Sebagai contoh, dalam operasi search, entitas dengan age yang disetel ke nilai default 18 akan disertakan dalam hasil.

res = client.search(
    collection_name="user_profiles_default",
    data=[[0.1, 0.2, 0.4, 0.3, 0.128]],
    search_params={"params": {"nprobe": 16}},
    filter="age == 18",  # 18 is the default value of the `age` field
    limit=10,
    output_fields=["id", "age", "status"]
)

print(res)

# Output
# data: ["[{'id': 2, 'distance': 0.28278401494026184, 'entity': {'id': 2, 'age': 18, 'status': 'active'}}, {'id': 4, 'distance': 0.8315839767456055, 'entity': {'id': 4, 'age': 18, 'status': 'inactive'}}]"] 


import io.milvus.v2.service.vector.request.SearchReq;
import io.milvus.v2.service.vector.request.data.FloatVec;
import io.milvus.v2.service.vector.response.SearchResp;

Map<String,Object> params = new HashMap<>();
params.put("nprobe", 16);
SearchResp resp = client.search(SearchReq.builder()
        .collectionName("user_profiles_default")
        .annsField("vector")
        .data(Collections.singletonList(new FloatVec(new float[]{0.1f, 0.2f, 0.3f, 0.4f, 0.5f})))
        .searchParams(params)
        .filter("age == 18")
        .topK(10)
        .outputFields(Arrays.asList("id", "age", "status"))
        .build());

System.out.println(resp.getSearchResults());

// Output
//
// [[SearchResp.SearchResult(entity={id=2, age=18, status=active}, score=0.050000004, id=2), SearchResp.SearchResult(entity={id=4, age=18, status=inactive}, score=0.45000002, id=4)]]

client.search({
    collection_name: 'user_profiles_default',
    data: [0.3, -0.6, 0.1, 0.3, 0.5],
    limit: 2,
    output_fields: ['age', 'id', 'status'],
    filter: 'age == 18',
    params: {
        nprobe: 16
    }
});

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "user_profiles_default",
    "data": [
        [0.1, 0.2, 0.3, 0.4, 0.5]
    ],
    "annsField": "vector",
    "limit": 5,
    "filter": "age == 18",
    "outputFields": ["id", "age", "status"]
}'

# {"code":0,"cost":0,"data":[{"age":18,"distance":0.050000004,"id":2,"status":"active"},{"age":18,"distance":0.45000002,"id":4,"status":"inactive"}]}

Dalam operasi query, Anda dapat mencocokkan atau memfilter dengan nilai default secara langsung.

# Query all entities where `age` equals the default value (18)
default_age_results = client.query(
    collection_name="user_profiles_default",
    filter="age == 18",
    output_fields=["id", "age", "status"]
)

# Query all entities where `status` equals the default value ("active")
default_status_results = client.query(
    collection_name="user_profiles_default",
    filter='status == "active"',
    output_fields=["id", "age", "status"]
)

import io.milvus.v2.service.vector.request.QueryReq;
import io.milvus.v2.service.vector.response.QueryResp;

QueryResp ageResp = client.query(QueryReq.builder()
        .collectionName("user_profiles_default")
        .filter("age == 18")
        .outputFields(Arrays.asList("id", "age", "status"))
        .build());

System.out.println(ageResp.getQueryResults());

// Output
//
// [QueryResp.QueryResult(entity={id=2, age=18, status=active}), QueryResp.QueryResult(entity={id=4, age=18, status=inactive})]

QueryResp statusResp = client.query(QueryReq.builder()
        .collectionName("user_profiles_default")
        .filter("status == \"active\"")
        .outputFields(Arrays.asList("id", "age", "status"))
        .build());

System.out.println(statusResp.getQueryResults());

// Output
//
// [QueryResp.QueryResult(entity={id=2, age=18, status=active}), QueryResp.QueryResult(entity={id=3, age=25, status=active})]

// Query all entities where `age` equals the default value (18)
const default_age_results = await client.query(
    collection_name: "user_profiles_default",
    filter: "age == 18",
    output_fields: ["id", "age", "status"]
);
// Query all entities where `status` equals the default value ("active")
const default_status_results = await client.query(
    collection_name: "user_profiles_default",
    filter: 'status == "active"',
    output_fields: ["id", "age", "status"]
)

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "user_profiles_default",
    "filter": "age == 18",
    "outputFields": ["id", "age", "status"]
}'

# {"code":0,"cost":0,"data":[{"age":18,"id":2,"status":"active"},{"age":18,"id":4,"status":"inactive"}]}

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "user_profiles_default",
    "filter": "status == \"active\"",
    "outputFields": ["id", "age", "status"]
}'

# {"code":0,"cost":0,"data":[{"age":18,"id":2,"status":"active"},{"age":25,"id":3,"status":"active"}]}

Aturan yang berlaku

Tabel berikut ini merangkum perilaku kolom yang dapat dinolkan dan nilai default di bawah kombinasi konfigurasi yang berbeda. Aturan-aturan ini menentukan bagaimana Milvus menangani data ketika mencoba memasukkan nilai null atau jika nilai kolom tidak disediakan.

NullableNilai DefaultJenis Nilai DefaultMasukan PenggunaHasilContoh
âś…âś…Tidak ada/nullTidak ada/nullMenggunakan nilai default
  • Bidang: age
  • Nilai default: 18
  • Masukan pengguna: null
  • Hasil: disimpan sebagai 18
✅❌-Tidak ada/nullDisimpan sebagai null
  • Bidang:
  • middle_name
  • Nilai default: -
  • Masukan
  • pengguna
  • : null
  • Hasil: disimpan sebagai null
❌✅Bukan nullTidak ada/nullMenggunakan nilai default
  • Bidang:
  • status
  • Nilai default:
  • "active"
  • Masukan pengguna: null
  • Hasil: disimpan sebagai "active"
❌❌-Tidak ada/nullMelemparkan kesalahan
  • Bidang:
  • email
  • Nilai default: -
  • Masukan
  • pengguna
  • : null
  • Hasil: Operasi ditolak, sistem melemparkan kesalahan
❌✅NullTidak ada/nullMelemparkan kesalahan
  • Bidang:
  • username
  • Nilai default: null
  • Masukan
  • pengguna
  • : null
  • Hasil: Operasi ditolak, sistem melemparkan kesalahan

Coba Milvus yang Dikelola secara Gratis

Zilliz Cloud bebas masalah, didukung oleh Milvus dan 10x lebih cepat.

Mulai
Umpan balik

Apakah halaman ini bermanfaat?