🚀 Coba Zilliz Cloud, Milvus yang sepenuhnya terkelola, secara gratis—rasakan performa 10x lebih cepat! Coba Sekarang>>

milvus-logo
LFAI
Beranda
  • Panduan Pengguna
  • Home
  • Docs
  • Panduan Pengguna

  • Bidang Skema & Data

  • Bidang Array

Bidang Array

Tipe Array digunakan untuk menyimpan bidang yang berisi beberapa nilai dengan tipe data yang sama. Tipe ini menyediakan cara yang fleksibel untuk menyimpan atribut dengan banyak elemen, sehingga sangat berguna dalam skenario di mana sekumpulan data terkait perlu disimpan. Di Milvus, Anda dapat menyimpan bidang Array di samping data vektor, sehingga memungkinkan kueri yang lebih kompleks dan persyaratan pemfilteran.

Sebagai contoh, dalam sistem rekomendasi musik, bidang Array dapat menyimpan daftar tag untuk sebuah lagu; dalam analisis perilaku pengguna, bidang ini dapat menyimpan peringkat pengguna untuk lagu. Di bawah ini adalah contoh bidang Array yang khas.

{
  "tags": ["pop", "rock", "classic"],
  "ratings": [5, 4, 3]
}

Dalam contoh ini, tags dan ratings keduanya adalah bidang Array. Bidang tags adalah larik string yang mewakili genre lagu seperti pop, rock, dan klasik, sedangkan bidang ratings adalah larik bilangan bulat yang mewakili peringkat pengguna untuk lagu tersebut, mulai dari 1 hingga 5. Bidang Array ini menyediakan cara yang fleksibel untuk menyimpan data multi-nilai, sehingga lebih mudah untuk melakukan analisis terperinci selama kueri dan pemfilteran.

Menambahkan bidang Array

Untuk menggunakan bidang Array di Milvus, tentukan jenis bidang yang relevan saat membuat skema koleksi. Proses ini meliputi.

  1. Mengatur datatype ke tipe data Array yang didukung, ARRAY.

  2. Menggunakan parameter element_type untuk menentukan tipe data dari elemen-elemen di dalam larik. Ini bisa berupa tipe data skalar apa pun yang didukung oleh Milvus, seperti VARCHAR atau INT64. Semua elemen dalam Larik yang sama harus memiliki tipe data yang sama.

  3. Menggunakan parameter max_capacity untuk mendefinisikan kapasitas maksimum larik, yaitu jumlah maksimum elemen yang dapat ditampung.

Berikut ini cara mendefinisikan skema koleksi yang menyertakan bidang Array.

from pymilvus import MilvusClient, DataType

client = MilvusClient(uri="http://localhost:19530")

schema = client.create_schema(
    auto_id=False,
    enable_dynamic_fields=True,
)

# Add an Array field with elements of type VARCHAR
schema.add_field(field_name="tags", datatype=DataType.ARRAY, element_type=DataType.VARCHAR, max_capacity=10, max_length=65535)
# Add an Array field with elements of type INT64
schema.add_field(field_name="ratings", datatype=DataType.ARRAY, element_type=DataType.INT64, max_capacity=5)

# Add primary field
schema.add_field(field_name="pk", datatype=DataType.INT64, is_primary=True)

# Add vector field
schema.add_field(field_name="embedding", datatype=DataType.FLOAT_VECTOR, dim=3)

import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.common.DataType;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;

MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
        .uri("http://localhost:19530")
        .build());
        
CreateCollectionReq.CollectionSchema schema = client.createSchema();
schema.setEnableDynamicField(true);

schema.addField(AddFieldReq.builder()
        .fieldName("tags")
        .dataType(DataType.Array)
        .elementType(DataType.VarChar)
        .maxCapacity(10)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("ratings")
        .dataType(DataType.Array)
        .elementType(DataType.Int64)
        .maxCapacity(5)
        .maxLength(65535)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("pk")
        .dataType(DataType.Int64)
        .isPrimaryKey(true)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("embedding")
        .dataType(DataType.FloatVector)
        .dimension(3)
        .build());

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const schema = [
  {
    name: "tags",
    data_type: DataType.Array,
    element_type: DataType.VarChar,
    max_capacity: 10,
    max_length: 65535
  },
  {
    name: "rating",
    data_type: DataType.Array,
    element_type: DataType.Int64,
    max_capacity: 5,
  },
  {
    name: "pk",
    data_type: DataType.Int64,
    is_primary_key: true,
  },
  {
    name: "embedding",
    data_type: DataType.FloatVector,
    dim: 3,
  },
];

export arrayField1='{
    "fieldName": "tags",
    "dataType": "Array",
    "elementDataType": "VarChar",
    "elementTypeParams": {
        "max_capacity": 10,
        "max_length": 65535
    }
}'

export arrayField2='{
    "fieldName": "ratings",
    "dataType": "Array",
    "elementDataType": "Int64",
    "elementTypeParams": {
        "max_capacity": 5
    }
}'

export pkField='{
    "fieldName": "pk",
    "dataType": "Int64",
    "isPrimary": true
}'

export vectorField='{
    "fieldName": "embedding",
    "dataType": "FloatVector",
    "elementTypeParams": {
        "dim": 3
    }
}'

export schema="{
    \"autoID\": false,
    \"fields\": [
        $arrayField1,
        $arrayField2,
        $pkField,
        $vectorField
    ]
}"

Dalam contoh ini.

  • tags adalah larik string dengan element_type disetel ke VARCHAR, yang mengindikasikan bahwa elemen dalam larik harus berupa string. max_capacity disetel ke 10, yang berarti larik dapat berisi hingga 10 elemen.

  • ratings adalah larik bilangan bulat dengan element_type diatur ke INT64, yang menunjukkan bahwa elemen harus berupa bilangan bulat. max_capacity diatur ke 5, yang memungkinkan hingga 5 peringkat.

  • Kami juga menambahkan bidang kunci utama pk dan bidang vektor embedding.

Bidang utama dan bidang vektor wajib ada saat Anda membuat koleksi. Bidang utama mengidentifikasi setiap entitas secara unik, sedangkan bidang vektor sangat penting untuk pencarian kemiripan. Untuk lebih jelasnya, lihat Bidang Utama & AutoID, Vektor Padat, Vektor Biner, atau Vektor Jarang.

Mengatur parameter indeks

Menetapkan parameter indeks untuk bidang Array bersifat opsional, namun dapat meningkatkan efisiensi pencarian secara signifikan.

Pada contoh berikut, kita membuat AUTOINDEX untuk field tags, yang berarti Milvus akan secara otomatis membuat indeks skalar yang sesuai berdasarkan tipe data.

# Prepare index parameters
index_params = client.prepare_index_params()  # Prepare IndexParams object

index_params.add_index(
    field_name="tags",  # Name of the Array field to index
    index_type="AUTOINDEX",  # Index type
    index_name="inverted_index"  # Index name
)

import io.milvus.v2.common.IndexParam;
import java.util.*;

List<IndexParam> indexes = new ArrayList<>();
indexes.add(IndexParam.builder()
        .fieldName("tags")
        .indexName("inverted_index")
        .indexType(IndexParam.IndexType.AUTOINDEX)
        .build());

const indexParams = [{
    index_name: 'inverted_index',
    field_name: 'tags',
    index_type: IndexType.AUTOINDEX,
)];

export indexParams='[
        {
            "fieldName": "tags",
            "indexName": "inverted_index",
            "indexType": "AUTOINDEX"
        }
    ]'

Selain AUTOINDEX, Anda dapat menentukan jenis indeks skalar lain seperti INVERTED atau BITMAP. Untuk jenis indeks yang didukung, lihat Indeks Skalar.

Selain itu, Anda harus membuat indeks untuk bidang vektor sebelum membuat koleksi. Dalam contoh ini, kita menggunakan AUTOINDEX untuk menyederhanakan penyiapan indeks vektor.

# Add vector index
index_params.add_index(
    field_name="embedding",
    index_type="AUTOINDEX",  # Use automatic indexing to simplify complex index settings
    metric_type="COSINE"  # Specify similarity metric type, such as L2, COSINE, or IP
)

indexes.add(IndexParam.builder()
        .fieldName("embedding")
        .indexType(IndexParam.IndexType.AUTOINDEX)
        .metricType(IndexParam.MetricType.COSINE)
        .build());

 indexParams.push({
    index_name: 'embedding_index',
    field_name: 'embedding',
    index_type: IndexType.AUTOINDEX,
});

export indexParams='[
        {
            "fieldName": "tags",
            "indexName": "inverted_index",
            "indexType": "AUTOINDEX"
        },
        {
            "fieldName": "embedding",
            "metricType": "COSINE",
            "indexType": "AUTOINDEX"
        }
    ]'

Membuat koleksi

Gunakan skema dan parameter indeks yang ditentukan untuk membuat koleksi.

client.create_collection(
    collection_name="my_array_collection",
    schema=schema,
    index_params=index_params
)

CreateCollectionReq requestCreate = CreateCollectionReq.builder()
        .collectionName("my_array_collection")
        .collectionSchema(schema)
        .indexParams(indexes)
        .build();
client.createCollection(requestCreate);

client.create_collection({
    collection_name: "my_array_collection",
    schema: schema,
    index_params: indexParams
})

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
    \"collectionName\": \"my_array_collection\",
    \"schema\": $schema,
    \"indexParams\": $indexParams
}"

Menyisipkan data

Setelah membuat koleksi, Anda dapat menyisipkan data yang menyertakan bidang Array.

data = [
    {
        "tags": ["pop", "rock", "classic"],
        "ratings": [5, 4, 3],
        "pk": 1,
        "embedding": [0.12, 0.34, 0.56]
    },
    {
        "tags": ["jazz", "blues"],
        "ratings": [4, 5],
        "pk": 2,
        "embedding": [0.78, 0.91, 0.23]
    },
    {
        "tags": ["electronic", "dance"],
        "ratings": [3, 3, 4],
        "pk": 3,
        "embedding": [0.67, 0.45, 0.89]
    }
]

client.insert(
    collection_name="my_array_collection",
    data=data
)

import com.google.gson.Gson;
import com.google.gson.JsonObject;

import io.milvus.v2.service.vector.request.InsertReq;
import io.milvus.v2.service.vector.response.InsertResp;

List<JsonObject> rows = new ArrayList<>();
Gson gson = new Gson();
rows.add(gson.fromJson("{\"tags\": [\"pop\", \"rock\", \"classic\"], \"ratings\": [5, 4, 3], \"pk\": 1, \"embedding\": [0.1, 0.2, 0.3]}", JsonObject.class));
rows.add(gson.fromJson("{\"tags\": [\"jazz\", \"blues\"], \"ratings\": [4, 5], \"pk\": 2, \"embedding\": [0.4, 0.5, 0.6]}", JsonObject.class));
rows.add(gson.fromJson("{\"tags\": [\"electronic\", \"dance\"], \"ratings\": [3, 3, 4], \"pk\": 3, \"embedding\": [0.7, 0.8, 0.9]}", JsonObject.class));

InsertResp insertR = client.insert(InsertReq.builder()
        .collectionName("my_array_collection")
        .data(rows)
        .build());

const data = [
    {
        "tags": ["pop", "rock", "classic"],
        "ratings": [5, 4, 3],
        "pk": 1,
        "embedding": [0.12, 0.34, 0.56]
    },
    {
        "tags": ["jazz", "blues"],
        "ratings": [4, 5],
        "pk": 2,
        "embedding": [0.78, 0.91, 0.23]
    },
    {
        "tags": ["electronic", "dance"],
        "ratings": [3, 3, 4],
        "pk": 3,
        "embedding": [0.67, 0.45, 0.89]
    }
];

client.insert({
  collection_name: "my_array_collection",
  data: data,
});

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/insert" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "data": [
        {
        "tags": ["pop", "rock", "classic"],
        "ratings": [5, 4, 3],
        "pk": 1,
        "embedding": [0.12, 0.34, 0.56]
    },
    {
        "tags": ["jazz", "blues"],
        "ratings": [4, 5],
        "pk": 2,
        "embedding": [0.78, 0.91, 0.23]
    },
    {
        "tags": ["electronic", "dance"],
        "ratings": [3, 3, 4],
        "pk": 3,
        "embedding": [0.67, 0.45, 0.89]
    }       
    ],
    "collectionName": "my_array_collection"
}'

Dalam contoh ini.

  • Setiap entri data mencakup bidang utama (pk), sedangkan tags dan ratings adalah bidang Array yang digunakan untuk menyimpan tag dan peringkat.

  • embedding adalah bidang vektor 3 dimensi yang digunakan untuk pencarian kemiripan vektor.

Pencarian dan kueri

Bidang larik memungkinkan pemfilteran skalar selama pencarian, meningkatkan kemampuan pencarian vektor Milvus. Anda dapat membuat kueri berdasarkan properti bidang Array di samping pencarian kemiripan vektor.

Menyaring kueri

Anda dapat memfilter data berdasarkan properti bidang Array, seperti mengakses elemen tertentu atau memeriksa apakah elemen array memenuhi kondisi tertentu.

filter = 'ratings[0] < 4'

res = client.query(
    collection_name="my_array_collection",
    filter=filter,
    output_fields=["tags", "ratings", "embedding"]
)

print(res)

# Output
# data: ["{'pk': 3, 'tags': ['electronic', 'dance'], 'ratings': [3, 3, 4], 'embedding': [np.float32(0.67), np.float32(0.45), np.float32(0.89)]}"] 

import io.milvus.v2.service.vector.request.QueryReq;
import io.milvus.v2.service.vector.response.QueryResp;

String filter = "ratings[0] < 4";
QueryResp resp = client.query(QueryReq.builder()
        .collectionName("my_array_collection")
        .filter(filter)
        .outputFields(Arrays.asList("tags", "ratings", "embedding"))
        .build());

System.out.println(resp.getQueryResults());

// Output
//
// [QueryResp.QueryResult(entity={ratings=[3, 3, 4], pk=3, embedding=[0.7, 0.8, 0.9], tags=[electronic, dance]})]

client.query({
    collection_name: 'my_array_collection',
    filter: 'ratings[0] < 4',
    output_fields: ['tags', 'ratings', 'embedding']
});

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "my_array_collection",
    "filter": "ratings[0] < 4",
    "outputFields": ["tags", "ratings", "embedding"]
}'
# {"code":0,"cost":0,"data":[{"embedding":[0.67,0.45,0.89],"pk":3,"ratings":{"Data":{"LongData":{"data":[3,3,4]}}},"tags":{"Data":{"StringData":{"data":["electronic","dance"]}}}}]}

Dalam kueri ini, Milvus menyaring entitas yang elemen pertama larik ratings kurang dari 4, dan mengembalikan entitas yang sesuai dengan kondisi tersebut.

Pencarian vektor dengan pemfilteran Array

Dengan menggabungkan kemiripan vektor dengan pemfilteran Array, Anda dapat memastikan bahwa data yang diambil tidak hanya mirip secara semantik tetapi juga memenuhi kondisi tertentu, sehingga hasil pencarian lebih akurat dan selaras dengan kebutuhan bisnis.

filter = 'tags[0] == "pop"'

res = client.search(
    collection_name="my_array_collection",
    data=[[0.3, -0.6, 0.1]],
    limit=5,
    search_params={"params": {"nprobe": 10}},
    output_fields=["tags", "ratings", "embedding"],
    filter=filter
)

print(res)

# Output
# data: ["[{'id': 1, 'distance': 1.1276001930236816, 'entity': {'ratings': [5, 4, 3], 'embedding': [0.11999999731779099, 0.3400000035762787, 0.5600000023841858], 'tags': ['pop', 'rock', 'classic']}}]"]

import io.milvus.v2.service.vector.request.SearchReq;
import io.milvus.v2.service.vector.response.SearchResp;

String filter = "tags[0] == \"pop\"";
SearchResp resp = client.search(SearchReq.builder()
        .collectionName("my_array_collection")
        .annsField("embedding")
        .data(Collections.singletonList(new FloatVec(new float[]{0.3f, -0.6f, 0.1f})))
        .topK(5)
        .outputFields(Arrays.asList("tags", "ratings", "embedding"))
        .filter(filter)
        .build());

System.out.println(resp.getSearchResults());

// Output
//
// [[SearchResp.SearchResult(entity={ratings=[5, 4, 3], embedding=[0.1, 0.2, 0.3], tags=[pop, rock, classic]}, score=-0.2364331, id=1)]]

client.search({
    collection_name: 'my_array_collection',
    data: [0.3, -0.6, 0.1],
    limit: 5,
    output_fields: ['tags', 'ratings', 'embdding'],
    filter: 'tags[0] == "pop"'
});

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "my_array_collection",
    "data": [
        [0.3, -0.6, 0.1]
    ],
    "annsField": "embedding",
    "limit": 5,
    "filter": "tags[0] == \"pop\"",
    "outputFields": ["tags", "ratings", "embedding"]
}'

# {"code":0,"cost":0,"data":[{"distance":-0.24793813,"embedding":[0.12,0.34,0.56],"id":1,"ratings":{"Data":{"LongData":{"data":[5,4,3]}}},"tags":{"Data":{"StringData":{"data":["pop","rock","classic"]}}}}]}

Dalam contoh ini, Milvus mengembalikan 5 entitas teratas yang paling mirip dengan vektor kueri, dengan elemen pertama larik tags adalah "pop".

Selain itu, Milvus mendukung operator pemfilteran Array tingkat lanjut seperti ARRAY_CONTAINS, ARRAY_CONTAINS_ALL, ARRAY_CONTAINS_ANY, dan ARRAY_LENGTH untuk lebih meningkatkan kemampuan kueri. Untuk lebih jelasnya, lihat Pemfilteran Metadata.

Batasan

  • Tipe Data: Semua elemen dalam bidang Array harus memiliki tipe data yang sama, seperti yang ditentukan oleh element_type.

  • Kapasitas Larik: Jumlah elemen dalam bidang Array harus kurang dari atau sama dengan kapasitas maksimum yang ditentukan saat Array dibuat, seperti yang ditentukan oleh max_capacity.

  • Penanganan String: Nilai string dalam bidang Array disimpan apa adanya, tanpa pelarian atau konversi semantik. Misalnya, 'a"b', "a'b", 'a\'b', dan "a\"b" disimpan seperti yang dimasukkan, sedangkan 'a'b' dan "a"b" dianggap sebagai nilai yang tidak valid.

Coba Milvus yang Dikelola secara Gratis

Zilliz Cloud bebas masalah, didukung oleh Milvus dan 10x lebih cepat.

Mulai
Umpan balik

Apakah halaman ini bermanfaat?