milvus-logo
LFAI
Home
  • Guía del usuario

Crear una colección

Puede crear una colección definiendo su esquema, parámetros de índice, tipo de métrica y si desea cargarla al crearla. En esta página se explica cómo crear una colección desde cero.

Visión general

Una colección es una tabla bidimensional con columnas fijas y filas variantes. Cada columna representa un campo y cada fila representa una entidad. Para implementar esta gestión estructural de datos se necesita un esquema. Cada entidad a insertar debe cumplir las restricciones definidas en el esquema.

Puede determinar todos los aspectos de una colección, incluido su esquema, los parámetros de índice, el tipo de métrica y si debe cargarse en el momento de la creación para asegurarse de que la colección cumple plenamente sus requisitos.

Para crear una colección, debe

Crear esquema

Un esquema define la estructura de datos de una colección. Al crear una colección, debe diseñar el esquema en función de sus necesidades. Para obtener más información, consulte Explicación del esquema.

Los siguientes fragmentos de código crean un esquema con el campo dinámico habilitado y tres campos obligatorios denominados my_id, my_vector y my_varchar.

Puede establecer valores por defecto para cualquier campo escalar y hacerlo anulable. Para más detalles, consulte Nullable & Default.

# 3. Create a collection in customized setup mode
from pymilvus import MilvusClient, DataType

client = MilvusClient(
    uri="http://localhost:19530",
    token="root:Milvus"
)

# 3.1. Create schema
schema = MilvusClient.create_schema(
    auto_id=False,
    enable_dynamic_field=True,
)

# 3.2. Add fields to schema
schema.add_field(field_name="my_id", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="my_vector", datatype=DataType.FLOAT_VECTOR, dim=5)
schema.add_field(field_name="my_varchar", datatype=DataType.VARCHAR, max_length=512)

import io.milvus.v2.common.DataType;
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;

String CLUSTER_ENDPOINT = "http://localhost:19530";
String TOKEN = "root:Milvus";

// 1. Connect to Milvus server
ConnectConfig connectConfig = ConnectConfig.builder()
        .uri(CLUSTER_ENDPOINT)
        .token(TOKEN)
        .build();

MilvusClientV2 client = new MilvusClientV2(connectConfig);

// 3. Create a collection in customized setup mode

// 3.1 Create schema
CreateCollectionReq.CollectionSchema schema = client.createSchema();

// 3.2 Add fields to schema
schema.addField(AddFieldReq.builder()
        .fieldName("my_id")
        .dataType(DataType.Int64)
        .isPrimaryKey(true)
        .autoID(false)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("my_vector")
        .dataType(DataType.FloatVector)
        .dimension(5)
        .build());

schema.addField(AddFieldReq.builder()
        .fieldName("my_varchar")
        .dataType(DataType.VarChar)
        .maxLength(512)
        .build());

import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});

// 3. Create a collection in customized setup mode
// 3.1 Define fields
const fields = [
    {
        name: "my_id",
        data_type: DataType.Int64,
        is_primary_key: true,
        auto_id: false
    },
    {
        name: "my_vector",
        data_type: DataType.FloatVector,
        dim: 5
    },
    {
        name: "my_varchar",
        data_type: DataType.VarChar,
        max_length: 512
    }
]

import "github.com/milvus-io/milvus/client/v2/entity"

schema := entity.NewSchema().WithDynamicFieldEnabled(true).
        WithField(entity.NewField().WithName("my_id").WithIsAutoID(true).WithDataType(entity.FieldTypeInt64).WithIsPrimaryKey(true)).
        WithField(entity.NewField().WithName("my_vector").WithDataType(entity.FieldTypeFloatVector).WithDim(5)).
        WithField(entity.NewField().WithName("my_varchar").WithDataType(entity.FieldTypeVarChar).WithMaxLength(512))thDim(5))

export schema='{
        "autoId": false,
        "enabledDynamicField": false,
        "fields": [
            {
                "fieldName": "my_id",
                "dataType": "Int64",
                "isPrimary": true
            },
            {
                "fieldName": "my_vector",
                "dataType": "FloatVector",
                "elementTypeParams": {
                    "dim": "5"
                }
            },
            {
                "fieldName": "my_varchar",
                "dataType": "VarChar",
                "elementTypeParams": {
                    "max_length": 512
                }
            }
        ]
    }'

(Opcional) Establecer parámetros de índice

La creación de un índice en un campo específico acelera la búsqueda en dicho campo. Un índice registra el orden de las entidades dentro de una colección. Como se muestra en los siguientes fragmentos de código, puede utilizar metric_type y index_type para seleccionar formas apropiadas para que Milvus indexe un campo y mida similitudes entre incrustaciones vectoriales.

En Milvus, puede utilizar AUTOINDEX como tipo de índice para todos los campos vectoriales, y uno de COSINE, L2, y IP como tipo de métrica en función de sus necesidades.

Como se demuestra en el fragmento de código anterior, debe establecer tanto el tipo de índice como el tipo métrico para los campos vectoriales y sólo el tipo de índice para los campos escalares. Los índices son obligatorios para los campos vectoriales y se recomienda crear índices en los campos escalares que se utilizan con frecuencia en las condiciones de filtrado.

Para más detalles, consulte Índices.

# 3.3. Prepare index parameters
index_params = client.prepare_index_params()

# 3.4. Add indexes
index_params.add_index(
    field_name="my_id",
    index_type="STL_SORT"
)

index_params.add_index(
    field_name="my_vector", 
    index_type="AUTOINDEX",
    metric_type="COSINE"
)

import io.milvus.v2.common.IndexParam;
import java.util.*;

// 3.3 Prepare index parameters
IndexParam indexParamForIdField = IndexParam.builder()
        .fieldName("my_id")
        .indexType(IndexParam.IndexType.STL_SORT)
        .build();

IndexParam indexParamForVectorField = IndexParam.builder()
        .fieldName("my_vector")
        .indexType(IndexParam.IndexType.AUTOINDEX)
        .metricType(IndexParam.MetricType.COSINE)
        .build();

List<IndexParam> indexParams = new ArrayList<>();
indexParams.add(indexParamForIdField);
indexParams.add(indexParamForVectorField);

// 3.2 Prepare index parameters
const index_params = [{
    field_name: "my_id",
    index_type: "STL_SORT"
},{
    field_name: "my_vector",
    index_type: "AUTOINDEX",
    metric_type: "COSINE"
}]

import (
    "github.com/milvus-io/milvus/client/v2"
    "github.com/milvus-io/milvus/client/v2/entity"
    "github.com/milvus-io/milvus/client/v2/index"
)

indexOptions := []client.CreateIndexOption{
    client.NewCreateIndexOption(collectionName, "my_vector", index.NewAutoIndex(entity.COSINE)).WithIndexName("my_vector"),
    client.NewCreateIndexOption(collectionName, "my_id", index.NewSortedIndex()).WithIndexName("my_id"),
}

export indexParams='[
        {
            "fieldName": "my_vector",
            "metricType": "COSINE",
            "indexName": "my_vector",
            "indexType": "AUTOINDEX"
        },
        {
            "fieldName": "my_id",
            "indexName": "my_id",
            "indexType": "STL_SORT"
        }
    ]'

Crear colección

Si ha creado una colección con parámetros de índice, Milvus carga automáticamente la colección en el momento de su creación. En este caso, se indexan todos los campos mencionados en los parámetros del índice.

Los siguientes fragmentos de código demuestran cómo crear la colección con parámetros de índice y comprobar su estado de carga.

# 3.5. Create a collection with the index loaded simultaneously
client.create_collection(
    collection_name="customized_setup_1",
    schema=schema,
    index_params=index_params
)

res = client.get_load_state(
    collection_name="customized_setup_1"
)

print(res)

# Output
#
# {
#     "state": "<LoadState: Loaded>"
# }

import io.milvus.v2.service.collection.request.CreateCollectionReq;
import io.milvus.v2.service.collection.request.GetLoadStateReq;

// 3.4 Create a collection with schema and index parameters
CreateCollectionReq customizedSetupReq1 = CreateCollectionReq.builder()
        .collectionName("customized_setup_1")
        .collectionSchema(schema)
        .indexParams(indexParams)
        .build();

client.createCollection(customizedSetupReq1);

// 3.5 Get load state of the collection
GetLoadStateReq customSetupLoadStateReq1 = GetLoadStateReq.builder()
        .collectionName("customized_setup_1")
        .build();

Boolean loaded = client.getLoadState(customSetupLoadStateReq1);
System.out.println(loaded);

// Output:
// true

// 3.3 Create a collection with fields and index parameters
res = await client.createCollection({
    collection_name: "customized_setup_1",
    fields: fields,
    index_params: index_params,
})

console.log(res.error_code)  

// Output
// 
// Success
// 

res = await client.getLoadState({
    collection_name: "customized_setup_1"
})

console.log(res.state)

// Output
// 
// LoadStateLoaded
// 

import "github.com/milvus-io/milvus/client/v2"

err := cli.CreateCollection(ctx, client.NewCreateCollectionOption("customized_setup_1", schema).
    WithIndexOptions(indexOptions...),
)
if err != nil {
    // handle error
}
fmt.Println("collection created")

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
    \"collectionName\": \"customized_setup_1\",
    \"schema\": $schema,
    \"indexParams\": $indexParams
}"

También puede crear una colección sin parámetros de índice y añadirlos después. En este caso, Milvus no carga la colección en el momento de su creación. Para más detalles sobre cómo crear índices para una colección existente, consulte Index Explained.

El siguiente fragmento de código demuestra cómo crear una colección sin una colección, y el estado de carga de la colección permanece sin cargar en el momento de su creación.

# 3.6. Create a collection and index it separately
client.create_collection(
    collection_name="customized_setup_2",
    schema=schema,
)

res = client.get_load_state(
    collection_name="customized_setup_2"
)

print(res)

# Output
#
# {
#     "state": "<LoadState: NotLoad>"
# }

// 3.6 Create a collection and index it separately
CreateCollectionReq customizedSetupReq2 = CreateCollectionReq.builder()
    .collectionName("customized_setup_2")
    .collectionSchema(schema)
    .build();

client.createCollection(customizedSetupReq2);

GetLoadStateReq customSetupLoadStateReq2 = GetLoadStateReq.builder()
        .collectionName("customized_setup_2")
        .build();
        
Boolean loaded = client.getLoadState(customSetupLoadStateReq2);
System.out.println(loaded);

// Output:
// false

// 3.4 Create a collection and index it seperately
res = await client.createCollection({
    collection_name: "customized_setup_2",
    fields: fields,
})

console.log(res.error_code)

// Output
// 
// Success
// 

res = await client.getLoadState({
    collection_name: "customized_setup_2"
})

console.log(res.state)

// Output
// 
// LoadStateNotLoad
// 

import "github.com/milvus-io/milvus/client/v2"

err := cli.CreateCollection(ctx, client.NewCreateCollectionOption("customized_setup_2", schema))
if err != nil {
    // handle error
}
fmt.Println("collection created")

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
    \"collectionName\": \"customized_setup_2\",
    \"schema\": $schema
}"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/get_load_state" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
    \"collectionName\": \"customized_setup_2\"
}"

Milvus también proporciona una forma de crear una colección instantáneamente. Para más detalles, consulte Crear colección instantáneamente.

Establecer propiedades de la colección

Puede establecer propiedades para la colección a crear para que se ajuste a su servicio. Las propiedades aplicables son las siguientes.

Establecer número de fragmentos

Los fragmentos son partes horizontales de una colección. Cada fragmento corresponde a un canal de entrada de datos. Por defecto, cada colección tiene un fragmento. Puede establecer el número apropiado de fragmentos al crear una colección basándose en el rendimiento esperado y el volumen de los datos a insertar en la colección.

En casos comunes, considere aumentar el número de fragmentos en uno cada vez que el rendimiento esperado aumente en 500 MB/s o el volumen de datos a insertar aumente en 100 GB. Esta sugerencia no le impide insertar datos en la colección utilizando el número de fragmentos predeterminado.

El siguiente fragmento de código muestra cómo establecer el número de fragmentos al crear una colección.

# With shard number
client.create_collection(
    collection_name="customized_setup_3",
    schema=schema,
    # highlight-next-line
    num_shards=1
)

// With shard number
CreateCollectionReq customizedSetupReq3 = CreateCollectionReq.builder()
    .collectionName("customized_setup_3")
    .collectionSchema(collectionSchema)
    // highlight-next-line
    .numShards(1)
    .build();
client.createCollection(customizedSetupReq3);

const createCollectionReq = {
    collection_name: "customized_setup_3",
    schema: schema,
    // highlight-next-line
    shards_num: 1
}

import "github.com/milvus-io/milvus/client/v2"

err := cli.CreateCollection(ctx, client.NewCreateCollectionOption("customized_setup_3", schema).WithShardNum(1))
if err != nil {
    // handle error
}
fmt.Println("collection created")

export params='{
    "shardsNum": 1
}'

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
    \"collectionName\": \"customized_setup_3\",
    \"schema\": $schema,
    \"params\": $params
}"

Habilitar mmap

Milvus habilita mmap en todas las colecciones por defecto, permitiendo a Milvus mapear datos de campo sin procesar en la memoria en lugar de cargarlos completamente. Esto reduce el consumo de memoria y aumenta la capacidad de las colecciones. Para más detalles sobre mmap, consulte Usar mmap.

# With mmap
client.create_collection(
    collection_name="customized_setup_4",
    schema=schema,
    # highlight-next-line
    enable_mmap=False
)

import io.milvus.param.Constant;

// With MMap
CreateCollectionReq customizedSetupReq4 = CreateCollectionReq.builder()
        .collectionName("customized_setup_4")
        .collectionSchema(schema)
        // highlight-next-line
        .property(Constant.MMAP_ENABLED, "false")
        .build();
client.createCollection(customizedSetupReq4);

client.create_collection({
    collection_name: "customized_setup_4",
    schema: schema,
     properties: {
        'mmap.enabled': true,
     },
})

import (
    "github.com/milvus-io/milvus/client/v2"
    "github.com/milvus-io/milvus/pkg/common"
)

err := cli.CreateCollection(ctx, client.NewCreateCollectionOption("customized_setup_4", schema).WithProperty(common.MmapEnabledKey, true))
if err != nil {
    // handle error
}
fmt.Println("collection created")

# Currently not available for REST

Establecer TTL de colección

Si una colección necesita ser eliminada durante un periodo específico, considere establecer su tiempo de vida (TTL) en segundos. Una vez que el TTL se agota, Milvus elimina las entidades de la colección y elimina la colección. El borrado es asíncrono, lo que indica que las búsquedas y consultas siguen siendo posibles antes de que se complete el borrado.

El siguiente fragmento de código establece el TTL en un día (86400 segundos). Se recomienda establecer el TTL en un par de días como mínimo.

# With TTL
client.create_collection(
    collection_name="customized_setup_5",
    schema=schema,
    # highlight-start
    properties={
        "collection.ttl.seconds": 86400
    }
    # highlight-end
)

import io.milvus.param.Constant;

// With TTL
CreateCollectionReq customizedSetupReq5 = CreateCollectionReq.builder()
        .collectionName("customized_setup_5")
        .collectionSchema(schema)
        // highlight-next-line
        .property(Constant.TTL_SECONDS, "86400")
        .build();
client.createCollection(customizedSetupReq5);

const createCollectionReq = {
    collection_name: "customized_setup_5",
    schema: schema,
    // highlight-start
    properties: {
        "collection.ttl.seconds": 86400
    }
    // highlight-end
}

import (
    "github.com/milvus-io/milvus/client/v2"
    "github.com/milvus-io/milvus/pkg/common"
)

err = cli.CreateCollection(ctx, client.NewCreateCollectionOption("customized_setup_5", schema).
        WithProperty(common.CollectionTTLConfigKey, 86400)) //  TTL in seconds
if err != nil {
        // handle error
}
fmt.Println("collection created")

export params='{
    "ttlSeconds": 86400
}'

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
    \"collectionName\": \"customized_setup_5\",
    \"schema\": $schema,
    \"params\": $params
}"

Establecer nivel de consistencia

Al crear una colección, puede establecer el nivel de consistencia para las búsquedas y consultas en la colección. También puedes cambiar el nivel de consistencia de la colección durante una búsqueda o consulta específica.

# With consistency level
client.create_collection(
    collection_name="customized_setup_6",
    schema=schema,
    # highlight-next
    consistency_level="Bounded",
)

import io.milvus.v2.common.ConsistencyLevel;

// With consistency level
CreateCollectionReq customizedSetupReq6 = CreateCollectionReq.builder()
        .collectionName("customized_setup_6")
        .collectionSchema(schema)
        // highlight-next-line
        .consistencyLevel(ConsistencyLevel.BOUNDED)
        .build();
client.createCollection(customizedSetupReq6);

const createCollectionReq = {
    collection_name: "customized_setup_6",
    schema: schema,
    // highlight-next
    consistency_level: "Bounded",
    // highlight-end
}

client.createCollection(createCollectionReq);

import (
    "github.com/milvus-io/milvus/client/v2"
    "github.com/milvus-io/milvus/client/v2/entity"
)

err := cli.CreateCollection(ctx, client.NewCreateCollectionOption("customized_setup_6", schema).
    WithConsistencyLevel(entity.ClBounded))
if err != nil {
    // handle error
}
fmt.Println("collection created")

export params='{
    "consistencyLevel": "Bounded"
}'

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
    \"collectionName\": \"customized_setup_6\",
    \"schema\": $schema,
    \"params\": $params
}"

Para obtener más información sobre los niveles de coherencia, consulte Nivel de coherencia.

Habilitar campo dinámico

El campo dinámico de una colección es un campo reservado de JavaScript Object Notation (JSON) llamado $meta. Una vez habilitado este campo, Milvus guarda todos los campos no definidos por el esquema que lleva cada entidad y sus valores como pares clave-valor en el campo reservado.

Para más detalles sobre cómo utilizar el campo dinámico, consulte Campo dinámico.

Traducido porDeepLogo

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

¿Fue útil esta página?