milvus-logo
LFAI
Home
  • Guía del usuario

Crear colección al instante

Puede crear una colección instantáneamente estableciendo su nombre y la dimensionalidad del campo vectorial. Milvus indexa automáticamente el campo vectorial y carga la colección en el momento de la creación. Esta página muestra cómo crear una colección instantáneamente con la configuración por defecto.

Visión general

Una colección es una tabla bidimensional con columnas fijas y filas variantes. Cada columna representa un campo y cada fila representa una entidad. Para implementar esta gestión estructural de datos se necesita un esquema. Cada entidad a insertar debe cumplir las restricciones definidas en el esquema.

Las aplicaciones AIGC suelen utilizar bases de datos vectoriales como base de conocimiento para gestionar los datos generados durante la interacción entre los usuarios y los Grandes Modelos Lingüísticos (LLM). Estas bases de conocimiento son prácticamente similares. Para acelerar el uso de los clusters de Milvus en tales escenarios, se dispone de un método instantáneo para crear una colección con sólo dos parámetros, a saber, el nombre de la colección y la dimensionalidad del campo vectorial.

Cuando se crea una colección instantáneamente con los parámetros por defecto, se aplican los siguientes parámetros.

  • Los campos primario y vectorial se añaden al esquema(id y vector).

  • El campo primario acepta números enteros y desactiva AutoId.

  • El campo vector acepta incrustaciones de vectores flotantes.

  • AUTOINDEX se utiliza para crear un índice en el campo vectorial.

  • COSINE se utiliza para medir similitudes entre incrustaciones vectoriales.

  • El campo dinámico de reservas $meta está habilitado para guardar campos no definidos por el esquema y sus valores en pares clave-valor.

  • La colección se carga automáticamente al crearse.

Para más detalles sobre las terminologías anteriores, consulte Explicación de la colección.

Cabe señalar que la creación instantánea de una colección con la configuración predeterminada no se ajusta a todos los escenarios. Le recomendamos que se familiarice con el procedimiento común de creación de colecciones para que pueda comprender mejor las capacidades de Milvus.

Configuración rápida

De esta manera, puede crear una colección instantáneamente con sólo el nombre de la colección y la dimensionalidad del campo vectorial.

from pymilvus import MilvusClient, DataType

CLUSTER_ENDPOINT = "http://localhost:19530"
TOKEN = "root:Milvus"

# 1. Set up a Milvus client
client = MilvusClient(
    uri=CLUSTER_ENDPOINT,
    token=TOKEN 
)

# 2. Create a collection in quick setup mode
client.create_collection(
    collection_name="quick_setup",
    dimension=5
)

res = client.get_load_state(
    collection_name="quick_setup"
)

print(res)

# Output
#
# {
#     "state": "<LoadState: Loaded>"
# }

import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.collection.request.GetLoadStateReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;

String CLUSTER_ENDPOINT = "http://localhost:19530";
String TOKEN = "root:Milvus";

// 1. Connect to Milvus server
ConnectConfig connectConfig = ConnectConfig.builder()
        .uri(CLUSTER_ENDPOINT)
        .token(TOKEN)
        .build();

MilvusClientV2 client = new MilvusClientV2(connectConfig);

// 2. Create a collection in quick setup mode
CreateCollectionReq quickSetupReq = CreateCollectionReq.builder()
        .collectionName("quick_setup")
        .dimension(5)
        .build();

client.createCollection(quickSetupReq);

GetLoadStateReq quickSetupLoadStateReq = GetLoadStateReq.builder()
        .collectionName("quick_setup")
        .build();

Boolean res = client.getLoadState(quickSetupLoadStateReq);
System.out.println(res);

// Output:
// true

// 1. Set up a Milvus Client
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});

// 2. Create a collection in quick setup mode
let res = await client.createCollection({
    collection_name: "quick_setup",
    dimension: 5,
});  

console.log(res.error_code)

// Output
// 
// Success
// 

res = await client.getLoadState({
    collection_name: "quick_setup"
})

console.log(res.state)

// Output
// 
// LoadStateLoaded
// 

// Go 缺失

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "quick_setup",
    "dimension": 5
}'

# {
#     "code": 0,
#     "data": {}
# }

Configuración rápida con campos personalizados

Si el tipo de métrica, los nombres de campo y los tipos de datos predeterminados no satisfacen tus necesidades, puedes ajustar estos parámetros como se indica a continuación.

from pymilvus import MilvusClient, DataType

CLUSTER_ENDPOINT = "http://localhost:19530"
TOKEN = "root:Milvus"

# 1. Set up a Milvus client
client = MilvusClient(
    uri=CLUSTER_ENDPOINT,
    token=TOKEN 
)

# 2. Create a collection in quick setup mode
client.create_collection(
    collection_name="custom_quick_setup",
    dimension=5,
    primary_field_name="my_id",
    id_type="string",
    vector_field_name="my_vector",
    metric_type="L2",
    auto_id=True,
    max_length=512
)

res = client.get_load_state(
    collection_name="custom_quick_setup"
)

print(res)

# Output
#
# {
#     "state": "<LoadState: Loaded>"
# }

import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.collection.request.GetLoadStateReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;

String CLUSTER_ENDPOINT = "http://localhost:19530";
String TOKEN = "root:Milvus";

// 1. Connect to Milvus server
ConnectConfig connectConfig = ConnectConfig.builder()
        .uri(CLUSTER_ENDPOINT)
        .token(TOKEN)
        .build();

MilvusClientV2 client = new MilvusClientV2(connectConfig);

// 2. Create a collection in quick setup mode
CreateCollectionReq customQuickSetupReq = CreateCollectionReq.builder()
        .collectionName("custom_quick_setup")
        .dimension(5)
        .primaryFieldName("my_id")
        .idType(DataType.VarChar)
        .maxLength(512)
        .vectorFieldName("my_vector")
        .metricType("L2")
        .autoID(true)
        .build();

client.createCollection(customQuickSetupReq);

GetLoadStateReq customQuickSetupLoadStateReq = GetLoadStateReq.builder()
        .collectionName("custom_quick_setup")
        .build();

Boolean res = client.getLoadState(customQuickSetupLoadStateReq);
System.out.println(res);

// Output:
// true

// 1. Set up a Milvus Client
const address = "http://localhost:19530";
const token = "root:Milvus";
const client = new MilvusClient({address, token});

// 2. Create a collection in quick setup mode
let res = await client.createCollection({
    collection_name: "custom_quick_setup",
    dimension: 5,
    primary_field_name: "my_id",
    id_type: "Varchar",
    max_length: 512,
    vector_field_name: "my_vector",
    metric_type: "L2",
    auto_id: true
});  

console.log(res.error_code)

// Output
// 
// Success
// 

res = await client.getLoadState({
    collection_name: "custom_quick_setup"
})

console.log(res.state)

// Output
// 
// LoadStateLoaded
// 

// Go 缺失

export CLUSTER_ENDPOINT="http://localhost:19530"
export TOKEN="root:Milvus"

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "custom_quick_setup",
    "dimension": 5,
    "primaryFieldName": "my_id",
    "idType": "VarChar",
    "vectorFieldName": "my_vector",
    "metricType": "L2",
    "autoId": true,
    "params": {
        "max_length": "512"
    }
}'

Si las colecciones creadas de las dos maneras anteriores siguen sin satisfacer sus necesidades, considere la posibilidad de seguir el procedimiento descrito en Crear colección.

Traducido porDeepLogo

Try Managed Milvus for Free

Zilliz Cloud is hassle-free, powered by Milvus and 10x faster.

Get Started
Feedback

¿Fue útil esta página?