Creación de RAG con Milvus y Crawl4AI
Crawl4AI ofrece un rastreo web ultrarrápido y preparado para IA para LLM. De código abierto y optimizado para RAG, simplifica el rastreo con extracción avanzada y rendimiento en tiempo real.
En este tutorial, le mostraremos cómo construir una canalización de Generación de Recuperación-Aumentada (RAG) utilizando Milvus y Crawl4AI. La canalización integra Crawl4AI para el rastreo de datos web, Milvus para el almacenamiento vectorial y OpenAI para generar respuestas perspicaces y conscientes del contexto.
Preparación
Dependencias y entorno
Para empezar, instala las dependencias necesarias ejecutando el siguiente comando:
$ pip install -U crawl4ai pymilvus openai requests tqdm
Si utilizas Google Colab, para activar las dependencias que acabas de instalar, es posible que tengas que reiniciar el tiempo de ejecución (haz clic en el menú "Tiempo de ejecución" en la parte superior de la pantalla y selecciona "Reiniciar sesión" en el menú desplegable).
Para configurar completamente crawl4ai, ejecuta los siguientes comandos:
# Run post-installation setup
$ crawl4ai-setup
# Verify installation
$ crawl4ai-doctor
[36m[INIT].... → Running post-installation setup...[0m
[36m[INIT].... → Installing Playwright browsers...[0m
[32m[COMPLETE] ● Playwright installation completed successfully.[0m
[36m[INIT].... → Starting database initialization...[0m
[32m[COMPLETE] ● Database initialization completed successfully.[0m
[32m[COMPLETE] ● Post-installation setup completed![0m
[0m[36m[INIT].... → Running Crawl4AI health check...[0m
[36m[INIT].... → Crawl4AI 0.4.247[0m
[36m[TEST].... ℹ Testing crawling capabilities...[0m
[36m[EXPORT].. ℹ Exporting PDF and taking screenshot took 0.80s[0m
[32m[FETCH]... ↓ https://crawl4ai.com... | Status: [32mTrue[0m | Time: 4.22s[0m
[36m[SCRAPE].. ◆ Processed https://crawl4ai.com... | Time: 14ms[0m
[32m[COMPLETE] ● https://crawl4ai.com... | Status: [32mTrue[0m | Total: [33m4.23s[0m[0m
[32m[COMPLETE] ● ✅ Crawling test passed![0m
[0m
Configurar la clave API de OpenAI
En este ejemplo utilizaremos OpenAI como LLM. Debes preparar la OPENAI_API_KEY como variable de entorno.
import os
os.environ["OPENAI_API_KEY"] = "sk-***********"
Preparar el LLM y el modelo de incrustación
Inicializamos el cliente OpenAI para preparar el modelo de incrustación.
from openai import OpenAI
openai_client = OpenAI()
Definimos una función para generar incrustaciones de texto utilizando el cliente OpenAI. Usamos el modelo text-embedding-3-small como ejemplo.
def emb_text(text):
return (
openai_client.embeddings.create(input=text, model="text-embedding-3-small")
.data[0]
.embedding
)
Generar una incrustación de prueba e imprimir su dimensión y sus primeros elementos.
test_embedding = emb_text("This is a test")
embedding_dim = len(test_embedding)
print(embedding_dim)
print(test_embedding[:10])
1536
[0.009889289736747742, -0.005578675772994757, 0.00683477520942688, -0.03805781528353691, -0.01824733428657055, -0.04121600463986397, -0.007636285852640867, 0.03225184231996536, 0.018949154764413834, 9.352207416668534e-05]
Rastreo de datos con Crawl4AI
from crawl4ai import *
async def crawl():
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
url="https://lilianweng.github.io/posts/2023-06-23-agent/",
)
return result.markdown
markdown_content = await crawl()
[INIT].... → Crawl4AI 0.4.247
[FETCH]... ↓ https://lilianweng.github.io/posts/2023-06-23-agen... | Status: True | Time: 0.07s
[COMPLETE] ● https://lilianweng.github.io/posts/2023-06-23-agen... | Status: True | Total: 0.08s
Procesamiento del contenido rastreado
Para que el contenido rastreado sea manejable para su inserción en Milvus, simplemente utilizamos "# " para separar el contenido, lo que puede separar aproximadamente el contenido de cada parte principal del archivo markdown rastreado.
def split_markdown_content(content):
return [section.strip() for section in content.split("# ") if section.strip()]
# Process the crawled markdown content
sections = split_markdown_content(markdown_content)
# Print the first few sections to understand the structure
for i, section in enumerate(sections[:3]):
print(f"Section {i+1}:")
print(section[:300] + "...")
print("-" * 50)
Section 1:
[Lil'Log](https://lilianweng.github.io/posts/2023-06-23-agent/<https:/lilianweng.github.io/> "Lil'Log \(Alt + H\)")
* |
* [ Posts ](https://lilianweng.github.io/posts/2023-06-23-agent/<https:/lilianweng.github.io/> "Posts")
* [ Archive ](https://lilianweng.github.io/posts/2023-06-23-agent/<h...
--------------------------------------------------
Section 2:
LLM Powered Autonomous Agents
Date: June 23, 2023 | Estimated Reading Time: 31 min | Author: Lilian Weng
Table of Contents
* [Agent System Overview](https://lilianweng.github.io/posts/2023-06-23-agent/<#agent-system-overview>)
* [Component One: Planning](https://lilianweng.github.io/posts/2023...
--------------------------------------------------
Section 3:
Agent System Overview[#](https://lilianweng.github.io/posts/2023-06-23-agent/<#agent-system-overview>)
In a LLM-powered autonomous agent system, LLM functions as the agent’s brain, complemented by several key components:
* **Planning**
* Subgoal and decomposition: The agent breaks down large t...
--------------------------------------------------
Cargar datos en Milvus
Crear la colección
from pymilvus import MilvusClient
milvus_client = MilvusClient(uri="./milvus_demo.db")
collection_name = "my_rag_collection"
INFO:numexpr.utils:Note: NumExpr detected 10 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
INFO:numexpr.utils:NumExpr defaulting to 8 threads.
En cuanto al argumento de MilvusClient
:
Establecer el
uri
como un archivo local, por ejemplo./milvus.db
, es el método más conveniente, ya que utiliza automáticamente Milvus Lite para almacenar todos los datos en este archivo.Si tiene una gran escala de datos, puede configurar un servidor Milvus más eficiente en docker o kubernetes. En esta configuración, por favor utilice la uri del servidor, por ejemplo
http://localhost:19530
, como suuri
.Si desea utilizar Zilliz Cloud, el servicio en la nube totalmente gestionado para Milvus, ajuste
uri
ytoken
, que corresponden al punto final público y a la clave Api en Zilliz Cloud.
Compruebe si la colección ya existe y elimínela en caso afirmativo.
if milvus_client.has_collection(collection_name):
milvus_client.drop_collection(collection_name)
Crear una nueva colección con los parámetros especificados.
Si no especificamos ninguna información de campo, Milvus creará automáticamente un campo id
por defecto para la clave primaria, y un campo vector
para almacenar los datos vectoriales. Se utiliza un campo JSON reservado para almacenar campos no definidos por el esquema y sus valores.
milvus_client.create_collection(
collection_name=collection_name,
dimension=embedding_dim,
metric_type="IP", # Inner product distance
consistency_level="Strong", # Strong consistency level
)
Insertar datos
from tqdm import tqdm
data = []
for i, section in enumerate(tqdm(sections, desc="Processing sections")):
embedding = emb_text(section)
data.append({"id": i, "vector": embedding, "text": section})
# Insert data into Milvus
milvus_client.insert(collection_name=collection_name, data=data)
Processing sections: 0%| | 0/18 [00:00<?, ?it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 6%|▌ | 1/18 [00:00<00:12, 1.37it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 11%|█ | 2/18 [00:01<00:11, 1.39it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 17%|█▋ | 3/18 [00:02<00:10, 1.40it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 22%|██▏ | 4/18 [00:02<00:07, 1.85it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 28%|██▊ | 5/18 [00:02<00:06, 2.06it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 33%|███▎ | 6/18 [00:03<00:06, 1.94it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 39%|███▉ | 7/18 [00:03<00:05, 2.14it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 44%|████▍ | 8/18 [00:04<00:04, 2.29it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 50%|█████ | 9/18 [00:04<00:04, 2.20it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 56%|█████▌ | 10/18 [00:05<00:03, 2.09it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 61%|██████ | 11/18 [00:06<00:04, 1.68it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 67%|██████▋ | 12/18 [00:06<00:04, 1.48it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 72%|███████▏ | 13/18 [00:07<00:02, 1.75it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 78%|███████▊ | 14/18 [00:07<00:01, 2.02it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 83%|████████▎ | 15/18 [00:07<00:01, 2.12it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 89%|████████▉ | 16/18 [00:08<00:01, 1.61it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 94%|█████████▍| 17/18 [00:09<00:00, 1.92it/s]INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Processing sections: 100%|██████████| 18/18 [00:09<00:00, 1.83it/s]
{'insert_count': 18, 'ids': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], 'cost': 0}
Construir RAG
Recuperar datos para una consulta
Especifiquemos una pregunta de consulta sobre el sitio web que acabamos de rastrear.
question = "What are the main components of autonomous agents?"
Busquemos la pregunta en la colección y recuperemos las 3 primeras coincidencias semánticas.
search_res = milvus_client.search(
collection_name=collection_name,
data=[emb_text(question)],
limit=3,
search_params={"metric_type": "IP", "params": {}},
output_fields=["text"],
)
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK"
Veamos los resultados de la consulta
import json
retrieved_lines_with_distances = [
(res["entity"]["text"], res["distance"]) for res in search_res[0]
]
print(json.dumps(retrieved_lines_with_distances, indent=4))
[
[
"Agent System Overview[#](https://lilianweng.github.io/posts/2023-06-23-agent/<#agent-system-overview>)\nIn a LLM-powered autonomous agent system, LLM functions as the agent\u2019s brain, complemented by several key components:\n * **Planning**\n * Subgoal and decomposition: The agent breaks down large tasks into smaller, manageable subgoals, enabling efficient handling of complex tasks.\n * Reflection and refinement: The agent can do self-criticism and self-reflection over past actions, learn from mistakes and refine them for future steps, thereby improving the quality of final results.\n * **Memory**\n * Short-term memory: I would consider all the in-context learning (See [Prompt Engineering](https://lilianweng.github.io/posts/2023-06-23-agent/<https:/lilianweng.github.io/posts/2023-03-15-prompt-engineering/>)) as utilizing short-term memory of the model to learn.\n * Long-term memory: This provides the agent with the capability to retain and recall (infinite) information over extended periods, often by leveraging an external vector store and fast retrieval.\n * **Tool use**\n * The agent learns to call external APIs for extra information that is missing from the model weights (often hard to change after pre-training), including current information, code execution capability, access to proprietary information sources and more.\n\n![](https://lilianweng.github.io/posts/2023-06-23-agent/agent-overview.png) Fig. 1. Overview of a LLM-powered autonomous agent system.",
0.6433743238449097
],
[
"LLM Powered Autonomous Agents \nDate: June 23, 2023 | Estimated Reading Time: 31 min | Author: Lilian Weng \nTable of Contents\n * [Agent System Overview](https://lilianweng.github.io/posts/2023-06-23-agent/<#agent-system-overview>)\n * [Component One: Planning](https://lilianweng.github.io/posts/2023-06-23-agent/<#component-one-planning>)\n * [Task Decomposition](https://lilianweng.github.io/posts/2023-06-23-agent/<#task-decomposition>)\n * [Self-Reflection](https://lilianweng.github.io/posts/2023-06-23-agent/<#self-reflection>)\n * [Component Two: Memory](https://lilianweng.github.io/posts/2023-06-23-agent/<#component-two-memory>)\n * [Types of Memory](https://lilianweng.github.io/posts/2023-06-23-agent/<#types-of-memory>)\n * [Maximum Inner Product Search (MIPS)](https://lilianweng.github.io/posts/2023-06-23-agent/<#maximum-inner-product-search-mips>)\n * [Component Three: Tool Use](https://lilianweng.github.io/posts/2023-06-23-agent/<#component-three-tool-use>)\n * [Case Studies](https://lilianweng.github.io/posts/2023-06-23-agent/<#case-studies>)\n * [Scientific Discovery Agent](https://lilianweng.github.io/posts/2023-06-23-agent/<#scientific-discovery-agent>)\n * [Generative Agents Simulation](https://lilianweng.github.io/posts/2023-06-23-agent/<#generative-agents-simulation>)\n * [Proof-of-Concept Examples](https://lilianweng.github.io/posts/2023-06-23-agent/<#proof-of-concept-examples>)\n * [Challenges](https://lilianweng.github.io/posts/2023-06-23-agent/<#challenges>)\n * [Citation](https://lilianweng.github.io/posts/2023-06-23-agent/<#citation>)\n * [References](https://lilianweng.github.io/posts/2023-06-23-agent/<#references>)\n\n\nBuilding agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as [AutoGPT](https://lilianweng.github.io/posts/2023-06-23-agent/<https:/github.com/Significant-Gravitas/Auto-GPT>), [GPT-Engineer](https://lilianweng.github.io/posts/2023-06-23-agent/<https:/github.com/AntonOsika/gpt-engineer>) and [BabyAGI](https://lilianweng.github.io/posts/2023-06-23-agent/<https:/github.com/yoheinakajima/babyagi>), serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.",
0.5462194085121155
],
[
"Component One: Planning[#](https://lilianweng.github.io/posts/2023-06-23-agent/<#component-one-planning>)\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\n#",
0.5223420858383179
]
]
Utilizar LLM para obtener una respuesta RAG
Convertir los documentos recuperados a un formato de cadena.
context = "\n".join(
[line_with_distance[0] for line_with_distance in retrieved_lines_with_distances]
)
Definir avisos de sistema y de usuario para el modelo de lenguaje. Este prompt se ensambla con los documentos recuperados de Milvus.
SYSTEM_PROMPT = """
Human: You are an AI assistant. You are able to find answers to the questions from the contextual passage snippets provided.
"""
USER_PROMPT = f"""
Use the following pieces of information enclosed in <context> tags to provide an answer to the question enclosed in <question> tags.
<context>
{context}
</context>
<question>
{question}
</question>
"""
Utilizar OpenAI ChatGPT para generar una respuesta basada en las instrucciones.
response = openai_client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": USER_PROMPT},
],
)
print(response.choices[0].message.content)
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
The main components of autonomous agents are:
1. **Planning**:
- Subgoal and decomposition: Breaking down large tasks into smaller, manageable subgoals.
- Reflection and refinement: Self-criticism and reflection to learn from past actions and improve future steps.
2. **Memory**:
- Short-term memory: In-context learning using prompt engineering.
- Long-term memory: Retaining and recalling information over extended periods using an external vector store and fast retrieval.
3. **Tool use**:
- Calling external APIs for information not contained in the model weights, accessing current information, code execution capabilities, and proprietary information sources.