encode_queries()
This operation takes in a list of query strings and encodes each query into a vector embedding.
Request syntax
encode_queries(
queries: List[str],
) -> List[np.array]
PARAMETERS:
queries (List[str])
A list of string values, where each string represents a query that will be passed to the embedding model for encoding. The model will generate an embedding vector for each string in the list.
RETURN TYPE:
List[np.array]
RETURNS:
A list where each element is a NumPy array.
Exceptions:
None
Examples
from pymilvus.model.dense import InstructorEmbeddingFunction
ef = InstructorEmbeddingFunction(
model_name="hkunlp/instructor-xl", # Defaults to `hkunlp/instructor-xl`
query_instruction="Represent the question for retrieval:",
doc_instruction="Represent the document for retrieval:"
)
queries = ["When was artificial intelligence founded",
"Where was Alan Turing born?"]
query_embeddings = ef.encode_queries(queries)
print("Embeddings:", query_embeddings)
print("Dim", ef.dim, query_embeddings[0].shape)
# Embeddings: [array([ 1.21721877e-02, 1.88485277e-03, 3.01732980e-02, -8.10302645e-02,
# -6.13401756e-02, -3.98149453e-02, -5.18723316e-02, -6.76784338e-03,
# -6.59285188e-02, -5.38365729e-02, -5.13435388e-03, -2.49210224e-02,
# -5.74403182e-02, -7.03031123e-02, 6.63730130e-03, -3.42259370e-02,
# ...
# 7.36595877e-03, 2.85532661e-02, -1.55952033e-02, 2.13342719e-02,
# 1.51187545e-02, -2.82798670e-02, 2.69396193e-02, 6.16136603e-02],
# dtype=float32)]
# Dim 768 (768,)