使用 Ragas 进行评估
本指南演示了如何使用 Ragas 评估基于Milvus 的检索增强生成(RAG)管道。
RAG 系统结合了检索系统和生成模型,可根据给定提示生成新文本。该系统首先使用 Milvus 从语料库中检索相关文档,然后使用生成模型根据检索到的文档生成新文本。
Ragas是一个帮助您评估 RAG 管道的框架。现有的工具和框架可以帮助您构建这些管道,但评估和量化管道性能可能很难。这就是 Ragas(RAG 评估)的用武之地。
前提条件
在运行本笔记本之前,请确保您已安装以下依赖项:
$ pip install --upgrade pymilvus openai requests tqdm pandas ragas
如果您使用的是 Google Colab,要启用刚刚安装的依赖项,可能需要重启运行时(点击屏幕上方的 "运行时 "菜单,从下拉菜单中选择 "重启会话")。
在本例中,我们将使用 OpenAI 作为 LLM。您应将api key OPENAI_API_KEY
作为环境变量。
import os
os.environ["OPENAI_API_KEY"] = "sk-***********"
定义 RAG 管道
我们将定义使用 Milvus 作为向量存储、OpenAI 作为 LLM 的 RAG 类。该类包含load
方法(将文本数据加载到 Milvus)、retrieve
方法(检索与给定问题最相似的文本数据)和answer
方法(使用检索到的知识回答给定问题)。
from typing import List
from tqdm import tqdm
from openai import OpenAI
from pymilvus import MilvusClient
class RAG:
"""
RAG (Retrieval-Augmented Generation) class built upon OpenAI and Milvus.
"""
def __init__(self, openai_client: OpenAI, milvus_client: MilvusClient):
self._prepare_openai(openai_client)
self._prepare_milvus(milvus_client)
def _emb_text(self, text: str) -> List[float]:
return (
self.openai_client.embeddings.create(input=text, model=self.embedding_model)
.data[0]
.embedding
)
def _prepare_openai(
self,
openai_client: OpenAI,
embedding_model: str = "text-embedding-3-small",
llm_model: str = "gpt-3.5-turbo",
):
self.openai_client = openai_client
self.embedding_model = embedding_model
self.llm_model = llm_model
self.SYSTEM_PROMPT = """
Human: You are an AI assistant. You are able to find answers to the questions from the contextual passage snippets provided.
"""
self.USER_PROMPT = """
Use the following pieces of information enclosed in <context> tags to provide an answer to the question enclosed in <question> tags.
<context>
{context}
</context>
<question>
{question}
</question>
"""
def _prepare_milvus(
self, milvus_client: MilvusClient, collection_name: str = "rag_collection"
):
self.milvus_client = milvus_client
self.collection_name = collection_name
if self.milvus_client.has_collection(self.collection_name):
self.milvus_client.drop_collection(self.collection_name)
embedding_dim = len(self._emb_text("foo"))
self.milvus_client.create_collection(
collection_name=self.collection_name,
dimension=embedding_dim,
metric_type="IP", # Inner product distance
consistency_level="Strong", # Strong consistency level
)
def load(self, texts: List[str]):
"""
Load the text data into Milvus.
"""
data = []
for i, line in enumerate(tqdm(texts, desc="Creating embeddings")):
data.append({"id": i, "vector": self._emb_text(line), "text": line})
self.milvus_client.insert(collection_name=self.collection_name, data=data)
def retrieve(self, question: str, top_k: int = 3) -> List[str]:
"""
Retrieve the most similar text data to the given question.
"""
search_res = self.milvus_client.search(
collection_name=self.collection_name,
data=[self._emb_text(question)],
limit=top_k,
search_params={"metric_type": "IP", "params": {}}, # Inner product distance
output_fields=["text"], # Return the text field
)
retrieved_texts = [res["entity"]["text"] for res in search_res[0]]
return retrieved_texts[:top_k]
def answer(
self,
question: str,
retrieval_top_k: int = 3,
return_retrieved_text: bool = False,
):
"""
Answer the given question with the retrieved knowledge.
"""
retrieved_texts = self.retrieve(question, top_k=retrieval_top_k)
user_prompt = self.USER_PROMPT.format(
context="\n".join(retrieved_texts), question=question
)
response = self.openai_client.chat.completions.create(
model=self.llm_model,
messages=[
{"role": "system", "content": self.SYSTEM_PROMPT},
{"role": "user", "content": user_prompt},
],
)
if not return_retrieved_text:
return response.choices[0].message.content
else:
return response.choices[0].message.content, retrieved_texts
让我们用 OpenAI 和 Milvus 客户端初始化 RAG 类。
openai_client = OpenAI()
milvus_client = MilvusClient(uri="./milvus_demo.db")
my_rag = RAG(openai_client=openai_client, milvus_client=milvus_client)
至于MilvusClient
的参数:
- 将
uri
设置为本地文件(如./milvus.db
)是最方便的方法,因为它会自动利用Milvus Lite将所有数据存储到该文件中。 - 如果数据规模较大,可以在docker 或 kubernetes 上设置性能更强的 Milvus 服务器。在此设置中,请使用服务器 uri,例如
http://localhost:19530
,作为您的uri
。 - 如果要使用Zilliz Cloud(Milvus 的完全托管云服务),请调整
uri
和token
,它们与 Zilliz Cloud 中的公共端点和 Api 密钥相对应。
运行 RAG 管道并获取结果
我们使用Milvus 开发指南作为 RAG 中的私有知识,它是简单 RAG 管道的良好数据源。
下载并将其加载到 RAG 管道中。
import os
import urllib.request
url = "https://raw.githubusercontent.com/milvus-io/milvus/master/DEVELOPMENT.md"
file_path = "./Milvus_DEVELOPMENT.md"
if not os.path.exists(file_path):
urllib.request.urlretrieve(url, file_path)
with open(file_path, "r") as file:
file_text = file.read()
# We simply use "# " to separate the content in the file, which can roughly separate the content of each main part of the markdown file.
text_lines = file_text.split("# ")
my_rag.load(text_lines) # Load the text data into RAG pipeline
Creating embeddings: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 47/47 [00:16<00:00, 2.80it/s]
让我们定义一个关于开发指南文档内容的查询问题。然后使用answer
方法获取答案和检索到的上下文文本。
question = "what is the hardware requirements specification if I want to build Milvus and run from source code?"
my_rag.answer(question, return_retrieved_text=True)
('The hardware requirements specification to build and run Milvus from source code is 8GB of RAM and 50GB of free disk space.',
['Hardware Requirements\n\nThe following specification (either physical or virtual machine resources) is recommended for Milvus to build and run from source code.\n\n```\n- 8GB of RAM\n- 50GB of free disk space\n```\n\n##',
'Building Milvus on a local OS/shell environment\n\nThe details below outline the hardware and software requirements for building on Linux and MacOS.\n\n##',
"Software Requirements\n\nAll Linux distributions are available for Milvus development. However a majority of our contributor worked with Ubuntu or CentOS systems, with a small portion of Mac (both x86_64 and Apple Silicon) contributors. If you would like Milvus to build and run on other distributions, you are more than welcome to file an issue and contribute!\n\nHere's a list of verified OS types where Milvus can successfully build and run:\n\n- Debian/Ubuntu\n- Amazon Linux\n- MacOS (x86_64)\n- MacOS (Apple Silicon)\n\n##"])
现在,让我们准备一些问题及其相应的地面实况答案。我们从 RAG 管道中获取答案和上下文。
from datasets import Dataset
import pandas as pd
question_list = [
"what is the hardware requirements specification if I want to build Milvus and run from source code?",
"What is the programming language used to write Knowhere?",
"What should be ensured before running code coverage?",
]
ground_truth_list = [
"If you want to build Milvus and run from source code, the recommended hardware requirements specification is:\n\n- 8GB of RAM\n- 50GB of free disk space.",
"The programming language used to write Knowhere is C++.",
"Before running code coverage, you should make sure that your code changes are covered by unit tests.",
]
contexts_list = []
answer_list = []
for question in tqdm(question_list, desc="Answering questions"):
answer, contexts = my_rag.answer(question, return_retrieved_text=True)
contexts_list.append(contexts)
answer_list.append(answer)
df = pd.DataFrame(
{
"question": question_list,
"contexts": contexts_list,
"answer": answer_list,
"ground_truth": ground_truth_list,
}
)
rag_results = Dataset.from_pandas(df)
df
Answering questions: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:03<00:00, 1.29s/it]
问题 | 上下文 | 答案 | 地面真相 | |
---|---|---|---|---|
0 | 硬件要求是什么? | [硬件要求(Hardware Requirements/n):以下是... | 构建Milvus的硬件要求规范是什么? | 如果您想构建 Milvus 并从源代码中运行... |
1 | 用什么编程语言编写Milvus... | [CMake & Conan\n\nMilvus 的算法库... | 编写知乎的编程语言是什么? | 用来编写知乎的编程语言是什么? |
2 | 运行代码覆盖前应确保什么? | [代码覆盖(Code coverage):在提交您的 pull ... | 在运行代码覆盖之前,应确保... | 在运行代码覆盖之前,你应该确保 ... |
使用 Ragas 进行评估
我们使用 Ragas 来评估 RAG 管道结果的性能。
Ragas 提供了一套易于使用的指标。我们将Answer relevancy
、Faithfulness
、Context recall
和Context precision
作为评估 RAG 管道的指标。有关指标的更多信息,请参阅Ragas 指标。
from ragas import evaluate
from ragas.metrics import (
answer_relevancy,
faithfulness,
context_recall,
context_precision,
)
result = evaluate(
rag_results,
metrics=[
answer_relevancy,
faithfulness,
context_recall,
context_precision,
],
)
result
Evaluating: 0%| | 0/12 [00:00<?, ?it/s]
{'answer_relevancy': 0.9445, 'faithfulness': 1.0000, 'context_recall': 1.0000, 'context_precision': 1.0000}