milvus-logo
LFAI
首页
  • 集成

使用 DeepEval 进行评估

Open In Colab

本指南演示了如何使用DeepEval评估基于Milvus 的检索增强生成 (RAG) 管道。

RAG 系统将检索系统与生成模型相结合,根据给定提示生成新文本。该系统首先使用 Milvus 从语料库中检索相关文档,然后使用生成模型根据检索到的文档生成新文本。

DeepEval 是一个帮助您评估 RAG 管道的框架。现有的工具和框架可以帮助您构建这些管道,但评估和量化管道性能可能很难。这就是 DeepEval 的用武之地。

前提条件

运行本笔记本之前,请确保已安装以下依赖项:

$ pip install --upgrade pymilvus openai requests tqdm pandas deepeval

如果您使用的是 Google Colab,要启用刚刚安装的依赖项,可能需要重启运行时(点击屏幕顶部的 "运行时 "菜单,从下拉菜单中选择 "重启会话")。

在本例中,我们将使用 OpenAI 作为 LLM。您应将api key OPENAI_API_KEY 作为环境变量。

import os

os.environ["OPENAI_API_KEY"] = "sk-*****************"

定义 RAG 管道

我们将定义使用 Milvus 作为向量存储、OpenAI 作为 LLM 的 RAG 类。该类包含load 方法(将文本数据加载到 Milvus)、retrieve 方法(检索与给定问题最相似的文本数据)和answer 方法(使用检索到的知识回答给定问题)。

from typing import List
from tqdm import tqdm
from openai import OpenAI
from pymilvus import MilvusClient


class RAG:
    """
    RAG(Retrieval-Augmented Generation) class built upon OpenAI and Milvus.
    """

    def __init__(self, openai_client: OpenAI, milvus_client: MilvusClient):
        self._prepare_openai(openai_client)
        self._prepare_milvus(milvus_client)

    def _emb_text(self, text: str) -> List[float]:
        return (
            self.openai_client.embeddings.create(input=text, model=self.embedding_model)
            .data[0]
            .embedding
        )

    def _prepare_openai(
        self,
        openai_client: OpenAI,
        embedding_model: str = "text-embedding-3-small",
        llm_model: str = "gpt-4o-mini",
    ):
        self.openai_client = openai_client
        self.embedding_model = embedding_model
        self.llm_model = llm_model
        self.SYSTEM_PROMPT = """
            Human: You are an AI assistant. You are able to find answers to the questions from the contextual passage snippets provided.
        """
        self.USER_PROMPT = """
            Use the following pieces of information enclosed in <context> tags to provide an answer to the question enclosed in <question> tags.
            <context>
            {context}
            </context>
            <question>
            {question}
            </question>
        """

    def _prepare_milvus(
        self, milvus_client: MilvusClient, collection_name: str = "rag_collection"
    ):
        self.milvus_client = milvus_client
        self.collection_name = collection_name
        if self.milvus_client.has_collection(self.collection_name):
            self.milvus_client.drop_collection(self.collection_name)
        embedding_dim = len(self._emb_text("demo"))
        self.milvus_client.create_collection(
            collection_name=self.collection_name,
            dimension=embedding_dim,
            metric_type="IP",
            consistency_level="Strong",
        )

    def load(self, texts: List[str]):
        """
        Load the text data into Milvus.
        """
        data = []
        for i, line in enumerate(tqdm(texts, desc="Creating embeddings")):
            data.append({"id": i, "vector": self._emb_text(line), "text": line})
        self.milvus_client.insert(collection_name=self.collection_name, data=data)

    def retrieve(self, question: str, top_k: int = 3) -> List[str]:
        """
        Retrieve the most similar text data to the given question.
        """
        search_res = self.milvus_client.search(
            collection_name=self.collection_name,
            data=[self._emb_text(question)],
            limit=top_k,
            search_params={"metric_type": "IP", "params": {}},  # inner product distance
            output_fields=["text"],  # Return the text field
        )
        retrieved_texts = [res["entity"]["text"] for res in search_res[0]]
        return retrieved_texts[:top_k]

    def answer(
        self,
        question: str,
        retrieval_top_k: int = 3,
        return_retrieved_text: bool = False,
    ):
        """
        Answer the given question with the retrieved knowledge.
        """
        retrieved_texts = self.retrieve(question, top_k=retrieval_top_k)
        user_prompt = self.USER_PROMPT.format(
            context="\n".join(retrieved_texts), question=question
        )
        response = self.openai_client.chat.completions.create(
            model=self.llm_model,
            messages=[
                {"role": "system", "content": self.SYSTEM_PROMPT},
                {"role": "user", "content": user_prompt},
            ],
        )
        if not return_retrieved_text:
            return response.choices[0].message.content
        else:
            return response.choices[0].message.content, retrieved_texts

让我们用 OpenAI 和 Milvus 客户端初始化 RAG 类。

openai_client = OpenAI()
milvus_client = MilvusClient(uri="./milvus_demo.db")

my_rag = RAG(openai_client=openai_client, milvus_client=milvus_client)

至于MilvusClient 的参数:

  • uri 设置为本地文件,如./milvus.db ,是最方便的方法,因为它会自动利用Milvus Lite将所有数据存储在此文件中。
  • 如果数据规模较大,可以在docker 或 kubernetes 上设置性能更强的 Milvus 服务器。在此设置中,请使用服务器 uri,例如http://localhost:19530 ,作为您的uri
  • 如果你想使用Zilliz Cloud(Milvus 的全托管云服务),请调整uritoken ,它们与 Zilliz Cloud 中的公共端点和 Api 密钥相对应。

运行 RAG 管道并获取结果

我们使用Milvus 开发指南作为 RAG 中的私有知识,它是简单 RAG 管道的良好数据源。

下载并将其加载到 RAG 管道中。

import urllib.request
import os

url = "https://raw.githubusercontent.com/milvus-io/milvus/master/DEVELOPMENT.md"
file_path = "./Milvus_DEVELOPMENT.md"

if not os.path.exists(file_path):
    urllib.request.urlretrieve(url, file_path)
with open(file_path, "r") as file:
    file_text = file.read()

text_lines = file_text.split("# ")
my_rag.load(text_lines)
Creating embeddings: 100%|██████████| 47/47 [00:20<00:00,  2.26it/s]

让我们定义一个关于开发指南文档内容的查询问题。然后使用answer 方法获取答案和检索到的上下文文本。

question = "what is the hardware requirements specification if I want to build Milvus and run from source code?"
my_rag.answer(question, return_retrieved_text=True)
('The hardware requirements specification to build and run Milvus from source code is as follows:\n\n- 8GB of RAM\n- 50GB of free disk space',
 ['Hardware Requirements\n\nThe following specification (either physical or virtual machine resources) is recommended for Milvus to build and run from source code.\n\n```\n- 8GB of RAM\n- 50GB of free disk space\n```\n\n##',
  'Building Milvus on a local OS/shell environment\n\nThe details below outline the hardware and software requirements for building on Linux and MacOS.\n\n##',
  "Software Requirements\n\nAll Linux distributions are available for Milvus development. However a majority of our contributor worked with Ubuntu or CentOS systems, with a small portion of Mac (both x86_64 and Apple Silicon) contributors. If you would like Milvus to build and run on other distributions, you are more than welcome to file an issue and contribute!\n\nHere's a list of verified OS types where Milvus can successfully build and run:\n\n- Debian/Ubuntu\n- Amazon Linux\n- MacOS (x86_64)\n- MacOS (Apple Silicon)\n\n##"])

现在,让我们准备一些问题及其相应的地面实况答案。我们从 RAG 管道中获取答案和上下文。

from datasets import Dataset
import pandas as pd

question_list = [
    "what is the hardware requirements specification if I want to build Milvus and run from source code?",
    "What is the programming language used to write Knowhere?",
    "What should be ensured before running code coverage?",
]
ground_truth_list = [
    "If you want to build Milvus and run from source code, the recommended hardware requirements specification is:\n\n- 8GB of RAM\n- 50GB of free disk space.",
    "The programming language used to write Knowhere is C++.",
    "Before running code coverage, you should make sure that your code changes are covered by unit tests.",
]
contexts_list = []
answer_list = []
for question in tqdm(question_list, desc="Answering questions"):
    answer, contexts = my_rag.answer(question, return_retrieved_text=True)
    contexts_list.append(contexts)
    answer_list.append(answer)

df = pd.DataFrame(
    {
        "question": question_list,
        "contexts": contexts_list,
        "answer": answer_list,
        "ground_truth": ground_truth_list,
    }
)
rag_results = Dataset.from_pandas(df)
df
/Users/eureka/miniconda3/envs/zilliz/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
  from .autonotebook import tqdm as notebook_tqdm
Answering questions: 100%|██████████| 3/3 [00:03<00:00,  1.06s/it]
问题 上下文 答案 地面真相
0 硬件要求是什么? [硬件要求(Hardware Requirements/n):以下是硬件要求规格。 构建Milvus的硬件要求规范... 如果您想构建 Milvus 并从源代码中运行...
1 用什么编程语言编写Milvus... [CMake & Conan\n\nMilvus 的算法库... 编写 Knowherus 的编程语言是什么? 用来编写知乎的编程语言...
2 运行代码覆盖前应确保什么? [代码覆盖(Code coverage)]在提交您的pull... 在运行代码覆盖之前,应该确保... 运行代码覆盖之前,应确保 ...

评估检索器

在评估大型语言模型(LLM)系统中的 Retriever 时,评估以下几点至关重要:

  1. 排名相关性:检索器如何有效地优先处理相关信息而非无关数据。

  2. 上下文检索:根据输入捕捉和检索上下文相关信息的能力。

  3. 平衡性:检索器如何很好地管理文本块大小和检索范围,以尽量减少无关信息。

这些因素结合在一起,可以让人全面了解检索器如何确定优先级、捕捉和呈现最有用的信息。

from deepeval.metrics import (
    ContextualPrecisionMetric,
    ContextualRecallMetric,
    ContextualRelevancyMetric,
)
from deepeval.test_case import LLMTestCase
from deepeval import evaluate

contextual_precision = ContextualPrecisionMetric()
contextual_recall = ContextualRecallMetric()
contextual_relevancy = ContextualRelevancyMetric()

test_cases = []

for index, row in df.iterrows():
    test_case = LLMTestCase(
        input=row["question"],
        actual_output=row["answer"],
        expected_output=row["ground_truth"],
        retrieval_context=row["contexts"],
    )
    test_cases.append(test_case)

# test_cases
result = evaluate(
    test_cases=test_cases,
    metrics=[contextual_precision, contextual_recall, contextual_relevancy],
    print_results=False,  # Change to True to see detailed metric results
)
/Users/eureka/miniconda3/envs/zilliz/lib/python3.9/site-packages/deepeval/__init__.py:49: UserWarning: You are using deepeval version 1.1.6, however version 1.2.2 is available. You should consider upgrading via the "pip install --upgrade deepeval" command.
  warnings.warn(
您正在运行 DeepEval 最新的上下文精度指标(使用 gpt-4o, strict=Falseasync_mode=True...
✨ 您正在运行 DeepEval 最新的上下文召回指标(使用 gpt-4o, strict=Falseasync_mode=True...
✨ 您正在运行 DeepEval 最新的上下文相关性指标(使用 gpt-4o, strict=Falseasync_mode=True...
Event loop is already running. Applying nest_asyncio patch to allow async execution...


Evaluating 3 test case(s) in parallel: |██████████|100% (3/3) [Time Taken: 00:11,  3.91s/test case]
测试完成 🎉!运行"deepeval login "查看 Confident AI 的评估结果。 
‼️ 注意:您也可以直接在 Confident AI 上对 deepeval 的所有指标进行评估。

评估生成

要评估大型语言模型 (LLM) 生成输出的质量,必须关注两个关键方面:

  1. 相关性:评估提示是否有效地引导 LLM 生成有帮助且与上下文相符的回答。

  2. 忠实性:衡量输出的准确性,确保模型生成的信息与事实相符,没有幻觉或矛盾。生成的内容应与检索上下文中提供的事实信息一致。

这些因素共同确保了输出结果的相关性和可靠性。

from deepeval.metrics import AnswerRelevancyMetric, FaithfulnessMetric
from deepeval.test_case import LLMTestCase
from deepeval import evaluate

answer_relevancy = AnswerRelevancyMetric()
faithfulness = FaithfulnessMetric()

test_cases = []

for index, row in df.iterrows():
    test_case = LLMTestCase(
        input=row["question"],
        actual_output=row["answer"],
        expected_output=row["ground_truth"],
        retrieval_context=row["contexts"],
    )
    test_cases.append(test_case)

# test_cases
result = evaluate(
    test_cases=test_cases,
    metrics=[answer_relevancy, faithfulness],
    print_results=False,  # Change to True to see detailed metric results
)
✨ 您正在运行 DeepEval 最新的答案相关性度量标准(使用 gpt-4o, strict=Falseasync_mode=True...
✨ 您正在运行 DeepEval 最新的忠实度指标(使用 gpt-4o, strict=Falseasync_mode=True...
Event loop is already running. Applying nest_asyncio patch to allow async execution...


Evaluating 3 test case(s) in parallel: |██████████|100% (3/3) [Time Taken: 00:11,  3.97s/test case]
测试已完成🎉!运行"deepeval login "查看 Confident AI 的评估结果。 
‼️ 注意:您也可以直接在 Confident AI 上运行对 deepeval 所有指标的评估。

翻译自DeepLogo

反馈

此页对您是否有帮助?