This guide describes how to build an index on vectors in Milvus.
Vector indexes are an organizational unit of metadata used to accelerate vector similarity search . You need to create an index before you can perform ANN searches against your Milvus.
See Vector Index for more information about the mechanism and varieties of vector indexes.
The following example builds a 1024-cluster IVF_FLAT index with Euclidean distance (L2) as the similarity metric. You can choose the index and metrics that suit your scenario. See Similarity Metrics for more information.
Prepare the index parameters as follows:
index_params = {
"metric_type" :"L2" ,
"index_type" :"IVF_FLAT" ,
"params" :{"nlist" :1024 }
}
const index_params = {
metric_type : "L2" ,
index_type : "IVF_FLAT" ,
params : JSON .stringify ({ nlist : 1024 }),
};
idx, err := entity.NewIndexIvfFlat(
entity.L2,
1024 ,
)
if err != nil {
log.Fatal("fail to create ivf flat index parameter:" , err.Error())
}
final IndexType INDEX_TYPE = IndexType.IVF_FLAT;
final String INDEX_PARAM = "{\"nlist\":1024}" ;
var indexType = IndexType.IvfFlat;
var metricType = SimilarityMetricType.L2;
var extraParams = new Dictionary<string , string > { ["nlist" ] = "1024" };
Parameter
Description
Options
metric_type
Type of metrics used to measure the similarity of vectors.
For floating point vectors:
L2
(Euclidean distance)
IP
(Inner product)
For binary vectors:
JACCARD
(Jaccard distance)
TANIMOTO
(Tanimoto distance)
HAMMING
(Hamming distance)
SUPERSTRUCTURE
(Superstructure)
SUBSTRUCTURE
(Substructure)
index_type
Type of index used to accelerate the vector search.
For floating point vectors:
FLAT
(FLAT)
IVF_FLAT
(IVF_FLAT)
IVF_SQ8
(IVF_SQ8)
IVF_PQ
(IVF_PQ)
HNSW
(HNSW)
ANNOY
(ANNOY)
DISKANN*
(DISK_ANN)
For binary vectors:
BIN_FLAT
(BIN_FLAT)
BIN_IVF_FLAT
(BIN_IVF_FLAT)
params
Building parameter(s) specific to the index.
See In-memory Index and On-disk Index for more information.
* DISKANN has certain prerequisites to meet. For details, see On-disk Index .
Parameter
Description
Option
metric_type
Type of metrics used to measure the similarity of vectors.
For floating point vectors:
L2
(Euclidean distance)
IP
(Inner product)
For binary vectors:
JACCARD
(Jaccard distance)
TANIMOTO
(Tanimoto distance)
HAMMING
(Hamming distance)
SUPERSTRUCTURE
(Superstructure)
SUBSTRUCTURE
(Substructure)
index_type
Type of index used to accelerate the vector search.
For floating point vectors:
FLAT
(FLAT)
IVF_FLAT
(IVF_FLAT)
IVF_SQ8
(IVF_SQ8)
IVF_PQ
(IVF_PQ)
HNSW
(HNSW)
ANNOY
(ANNOY)
For binary vectors:
BIN_FLAT
(BIN_FLAT)
BIN_IVF_FLAT
(BIN_IVF_FLAT)
params
Building parameter(s) specific to the index.
See In-memory Index and On-disk Index for more information.
Parameter
Description
Options
NewIndex func
Function to create entity. Index according to different index types.
For floating point vectors:
NewIndexFlat
(FLAT)
NewIndexIvfFlat
(IVF_FLAT)
NewIndexIvfSQ8
(IVF_SQ8)
NewIndexIvfPQ
(IVF_PQ)
NewIndexHNSW
(HNSW)
NewIndexANNOY
(ANNOY)
NewIndexDISKANN*
(DISK_ANN)
For binary vectors:
NewIndexBinFlat
(BIN_FLAT)
NewIndexBinIvfFlat
(BIN_IVF_FLAT)
metricType
Type of metrics used to measure the similarity of vectors.
For floating point vectors:
L2
(Euclidean distance)
IP
(Inner product)
For binary vectors:
JACCARD
(Jaccard distance)
TANIMOTO
(Tanimoto distance)
HAMMING
(Hamming distance)
SUPERSTRUCTURE
(Superstructure)
SUBSTRUCTURE
(Substructure)
ConstructParams
Building parameter(s) specific to the index.
See In-memory Index and On-disk Index for more information.
* DISKANN has certain prerequisites to meet. For details, see On-disk Index .
Parameter
Description
Options
IndexType
Type of index used to accelerate the vector search.
For floating point vectors:
FLAT
(FLAT)
IVF_FLAT
(IVF_FLAT)
IVF_SQ8
(IVF_SQ8)
IVF_PQ
(IVF_PQ)
HNSW
(HNSW)
ANNOY
(ANNOY)
DISKANN*
(DISK_ANN)
For binary vectors:
BIN_FLAT
(BIN_FLAT)
BIN_IVF_FLAT
(BIN_IVF_FLAT)
ExtraParam
Building parameter(s) specific to the index.
See In-memory Index and On-disk Index for more information.
* DISKANN has certain prerequisites to meet. For details, see On-disk Index .
Parameter
Description
Options
indexType
Type of index used to accelerate the vector search.
For floating point vectors:
IndexType.Flat
(FLAT)
IndexType.IvfFlat
(IVF_FLAT)
IndexType.IvfSq8
(IVF_SQ8)
IndexType.IvfPq
(IVF_PQ)
IndexType.Hnsw
(HNSW)
IndexType.Annoy
(ANNOY)
For binary vectors:
IndexType.BinFlat
(BIN_FLAT)
IndexType.BinIvfFlat
(BIN_IVF_FLAT)
ExtraParam
Building parameter(s) specific to the index.
See In-memory Index for more information.
Build the index by specifying the vector field name and index parameters.
from pymilvus import Collection, utility
collection = Collection("book" )
collection.create_index(
field_name="book_intro" ,
index_params=index_params
)
utility.index_building_progress("book" )
await milvusClient.createIndex ({
collection_name : "book" ,
field_name : "book_intro" ,
extra_params : index_params,
});
err := milvusClient.CreateIndex(
context.Background(),
"book" ,
"book_intro" ,
idx,
false ,
)
if err != nil {
log.Fatal("fail to create index:" , err.Error())
}
milvusClient.createIndex (
CreateIndexParam .newBuilder ()
.withCollectionName ("book" )
.withFieldName ("book_intro" )
.withIndexType (INDEX_TYPE )
.withMetricType (MetricType .L2 )
.withExtraParam (INDEX_PARAM )
.withSyncMode (Boolean .FALSE )
.build ()
);
await milvusClient.GetCollection ("book" ).CreateIndexAsync ("book_intro" , indexType, metricType, extraParams : extraParams);
Parameter
Description
field_name
Name of the vector field to build index on.
index_params
Parameters of the index to build.
Parameter
Description
collection_name
Name of the collection to build index in.
field_name
Name of the vector field to build index on.
extra_params
Parameters of the index to build.
Parameter
Description
ctx
Context to control API invocation process.
CollectionName
Name of the collection to build index on.
fieldName
Name of the vector field to build index on.
entity.Index
Parameters of the index to build.
async
Switch to control sync/async behavior. The deadline of context is not applied in sync building process.
Learn more basic operations of Milvus: